1,851 research outputs found

    Note on the active sphere of luminescence quenching

    Get PDF

    A parallel multistate framework for atomistic non-equilibrium reaction dynamics of solutes in strongly interacting organic solvents

    Get PDF
    We describe a parallel linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM. Forces are obtained using the Hellman-Feynmann relationship, giving continuous gradients, and excellent energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to CCSD(T)-F12 electronic structure theory, we built a 64-state MS-EVB model designed to study the F + CD3CN -> DF + CD2CN reaction in CD3CN solvent. This approach allows us to build a reactive potential energy surface (PES) whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We use our PES to run MD simulations, and examine a range of transient observables which follow in the wake of reaction, including transient spectra of the DF vibrational band, time dependent profiles of vibrationally excited DF in CD3CN solvent, and relaxation rates for energy flow from DF into the solvent, all of which agree well with experimental observations. Immediately following deuterium abstraction, the nascent DF is in a non-equilibrium regime in two different respects: (1) it is highly excited, with ~23 kcal mol-1 localized in the stretch; and (2) not yet Hydrogen bonded to the CD3CN solvent, its microsolvation environment is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral blue shift, while relaxation of its microsolvation environment results in a red shift. These two competing effects result in a post-reaction relaxation profile distinct from that observed when DF vibration excitation occurs within an equilibrium microsolvation environment. The parallel software framework presented in this paper should be more broadly applicable to a range of complex reactive systems.Comment: 58 pages and 29 Figure

    Electrical transport properties of bulk MgB2 materials synthesized by the electrolysis on fused mixtures of MgCl2, NaCl, KCl and MgB2O4

    Full text link
    Electrolysis was carried out on fused mixtures of MgCl2, NaCl, KCl and MgB2O4 under an Ar flow at 600C. Electrical resistivity measurements for the grown deposits show an onset of superconducting transition at 37 K in the absence of applied magnetic field. The resistivity decreases down to zero below 32 K. From an applied-field dependence of resistivity, an upper critical field and a coherence length were calculated to be 9.7 T and 5.9 nm at 0 K, respectively

    Transport critical current of Solenoidal MgB2/Cu Coils Fabricated Using a Wind-Reaction In-situ Technique

    Full text link
    In this letter, we report the results of transport Jc of solenoid coils upto 100 turns fabricated with Cu-sheathed MgB2 wires using a wind-reaction in-situ technique. Despite the low density of single core and some reaction between Mg and Cu-sheath, our results demonstrate the decrease in transport Jc with increasing length of MgB2 wires is insignificant. Solenoid coils with diameter as small as 10 mm can be readily fabricated using a wind-reaction in-situ technique. The Jc of coils is essentially the same as in the form of straight wires. A Jc of 133,000 A/cm2 and 125,000 A/cm2 at 4 K and self field has been achieved for a small coil wound using Cu-sheathed tape and Cu-sheathed wire respectively. These results indicate that the MgB2 wires have a great potential for lage scale applicationsComment: 6 pages, 4 figures, 1 tabl

    Improved Current Densities in MgB2 By Liquid-Assisted Sintering

    Full text link
    Polycrystalline MgB2 samples with GaN additions were prepared by reaction of Mg, B, and GaN powders. The presence of Ga leads to a low melting eutectic phase which allowed liquid phase sintering and produces plate-like grains. For low-level GaN additions (5% at. % or less), the critical transition temperature, Tc, remained unchanged and in 1T magnetic field, the critical current density, Jc was enhanced by a factor of 2 and 10, for temperatures of \~5K and 20K, respectively. The values obtained are approaching those of hot isostatically pressed samples.Comment: 12 pages, 1 table, 4 figures, accepted in Applied Physics Letter
    • …
    corecore