9 research outputs found

    Characteristics and in vitro response of thin hydroxyapatite-titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions

    Get PDF
    The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and β-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings

    Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems

    Full text link
    International audienceNanoparticles (NPs) have a great potential as nanosized drug-delivery carriers. Such systems must safely deliver the drug to the site of the tumor without drug leakage, effectively penetrate inside cancer cells, and provide intracellular drug release. Herein we developed an original and simple method aimed at the fabrication of spherical boron nitride NPs (BNNPs), 100-200 nm in diameter, with peculiar petal-like surfaces via chemical vapor deposition. Such structures were found to be able to absorb a large amount of antitumor drug-killing tumor cells. They revealed low cytotoxicity and rapid cellular uptake. BNNPs were saturated with doxorubicin (DOX) and then dispersed. The BNNPs loaded with DOX (BNNPs-DOX) were stable at neutral pH but effectively released DOX at pH 4.5-5.5. MTT assay and cell growth testing showed that the BNNPs-DOX nanocarriers had been toxic for IAR-6-1 cells. BNNPs loaded with DOX penetrated into the neoplastic IAR-6-1 cells using endocytic pathways, and then DOX released into the cytoplasm and cell nuclei and resulted in cell death. © 2015 American Chemical Society

    Myosin Motors and Not Actin Comets Are Mediators of the Actin-based Golgi-to-Endoplasmic Reticulum Protein Transport

    Get PDF
    We have previously reported that actin filaments are involved in protein transport from the Golgi complex to the endoplasmic reticulum. Herein, we examined whether myosin motors or actin comets mediate this transport. To address this issue we have used, on one hand, a combination of specific inhibitors such as 2,3-butanedione monoxime (BDM) and 1-[5-isoquinoline sulfonyl]-2-methyl piperazine (ML7), which inhibit myosin and the phosphorylation of myosin II by the myosin light chain kinase, respectively; and a mutant of the nonmuscle myosin II regulatory light chain, which cannot be phosphorylated (MRLC2(AA)). On the other hand, actin comet tails were induced by the overexpression of phosphatidylinositol phosphate 5-kinase. Cells treated with BDM/ML7 or those that express the MRLC2(AA) mutant revealed a significant reduction in the brefeldin A (BFA)-induced fusion of Golgi enzymes with the endoplasmic reticulum (ER). This delay was not caused by an alteration in the formation of the BFA-induced tubules from the Golgi complex. In addition, the Shiga toxin fragment B transport from the Golgi complex to the ER was also altered. This impairment in the retrograde protein transport was not due to depletion of intracellular calcium stores or to the activation of Rho kinase. Neither the reassembly of the Golgi complex after BFA removal nor VSV-G transport from ER to the Golgi was altered in cells treated with BDM/ML7 or expressing MRLC2(AA). Finally, transport carriers containing Shiga toxin did not move into the cytosol at the tips of comet tails of polymerizing actin. Collectively, the results indicate that 1) myosin motors move to transport carriers from the Golgi complex to the ER along actin filaments; 2) nonmuscle myosin II mediates in this process; and 3) actin comets are not involved in retrograde transport

    UEG Week 2019 Poster Presentations

    Full text link
    corecore