53 research outputs found

    Social sciences research in neglected tropical diseases 2: A bibliographic analysis

    Get PDF
    The official published version of the article can be found at the link below.Background There are strong arguments for social science and interdisciplinary research in the neglected tropical diseases. These diseases represent a rich and dynamic interplay between vector, host, and pathogen which occurs within social, physical and biological contexts. The overwhelming sense, however, is that neglected tropical diseases research is a biomedical endeavour largely excluding the social sciences. The purpose of this review is to provide a baseline for discussing the quantum and nature of the science that is being conducted, and the extent to which the social sciences are a part of that. Methods A bibliographic analysis was conducted of neglected tropical diseases related research papers published over the past 10 years in biomedical and social sciences. The analysis had textual and bibliometric facets, and focussed on chikungunya, dengue, visceral leishmaniasis, and onchocerciasis. Results There is substantial variation in the number of publications associated with each disease. The proportion of the research that is social science based appears remarkably consistent (<4%). A textual analysis, however, reveals a degree of misclassification by the abstracting service where a surprising proportion of the "social sciences" research was pure clinical research. Much of the social sciences research also tends to be "hand maiden" research focused on the implementation of biomedical solutions. Conclusion There is little evidence that scientists pay any attention to the complex social, cultural, biological, and environmental dynamic involved in human pathogenesis. There is little investigator driven social science and a poor presence of interdisciplinary science. The research needs more sophisticated funders and priority setters who are not beguiled by uncritical biomedical promises

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Decoding the ocean's microbiological secrets for marine enzyme biodiscovery

    Get PDF
    A global census of marine microbial life has been underway over the past several decades. During this period, there have been scientific breakthroughs in estimating microbial diversity and understanding microbial functioning and ecology. It is estimated that the ocean, covering 71% of the earth's surface with its estimated volume of about 2 x 10(18) m(3) and an average depth of 3800 m, hosts the largest population of microbes on Earth. More than 2 million eukaryotic and prokaryotic species are thought to thrive both in the ocean and on its surface. Prokaryotic cell abundances can reach densities of up to 10(12) cells per millilitre, exceeding eukaryotic densities of around 10(6) cells per millilitre of seawater. Besides their large numbers and abundance, marine microbial assemblages and their organic catalysts (enzymes) have a largely underestimated value for their use in the development of industrial products and processes. In this perspective article, we identified critical gaps in knowledge and technology to fast-track this development. We provided a general overview of the presumptive microbial assemblages in oceans, and an estimation of what is known and the enzymes that have been currently retrieved. We also discussed recent advances made in this area by the collaborative European Horizon 2020 project 'INMARE'

    The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila

    Get PDF
    Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    A Dominant-Negative Mutation of Mouse Lmx1b Causes Glaucoma and Is Semi-lethal via LBD1-Mediated Dimerisation

    Get PDF
    Mutations in the LIM-homeodomain transcription factor LMX1B cause nail-patella syndrome, an autosomal dominant pleiotrophic human disorder in which nail, patella and elbow dysplasia is associated with other skeletal abnormalities and variably nephropathy and glaucoma. It is thought to be a haploinsufficient disorder. Studies in the mouse have shown that during development Lmx1b controls limb dorsal-ventral patterning and is also required for kidney and eye development, midbrain-hindbrain boundary establishment and the specification of specific neuronal subtypes. Mice completely deficient for Lmx1b die at birth. In contrast to the situation in humans, heterozygous null mice do not have a mutant phenotype. Here we report a novel mouse mutant Icst, an N-ethyl-N-nitrosourea-induced missense substitution, V265D, in the homeodomain of LMX1B that abolishes DNA binding and thereby the ability to transactivate other genes. Although the homozygous phenotypic consequences of Icst and the null allele of Lmx1b are the same, heterozygous Icst elicits a phenotype whilst the null allele does not. Heterozygous Icst causes glaucomatous eye defects and is semi-lethal, probably due to kidney failure. We show that the null phenotype is rescued more effectively by an Lmx1b transgene than is Icst. Co-immunoprecipitation experiments show that both wild-type and Icst LMX1B are found in complexes with LIM domain binding protein 1 (LDB1), resulting in lower levels of functional LMX1B in Icst heterozygotes than null heterozygotes. We conclude that Icst is a dominant-negative allele of Lmx1b. These findings indicate a reassessment of whether nail-patella syndrome is always haploinsufficient. Furthermore, Icst is a rare example of a model of human glaucoma caused by mutation of the same gene in humans and mice

    Variability of Prokaryotic Community Structure in a Drinking Water Reservoir (Marathonas, Greece)

    Full text link
    The structure of the Bacteria and Archaea community in a large drinking water reservoir (Marathonas, Greece; MR) was investigated in October 2007 and September 2008, using 16S rRNA gene clone libraries. The bacterial communities were more diverse than archaeal communities (Shannon diversity index H' 0.81-3.28 and 1.36-1.77, respectively). The overall bacterial community composition was comparable to bacterioplankton community described in other freshwater habitats. Within the Bacteria, Betaproteobacteria dominated, while representatives of Alpha-, Gamma- and Deltaproteobacteria also occurred. Other important phyla were Actinobacteria and Bacteroidetes, while representatives of Acidobacteria, Cyanobacteria, Chloroflexi, Planctomycetes and Verrucomicrobia were also retrieved. Several phylotypes in Alpha-and Betaproteobacteria and Bacteroidetes were related to bacteria capable of cyanotoxin degradation and with aromatic compounds/iron oxidizers or polymer degraders. Euryarchaeota dominated (60.5%) the Archaea community mostly with phylotypes related to Methanobacteriales and Methanosarcinales. Among the Thaumarchaeota, the two most abundant phylotypes were affiliated (97% similarity) with the only cultivated mesophilic thaumarchaeote of marine origin, Nitrosopumilus maritimus. Temporal and spatial comparison of the prokaryotic community structure revealed that three of the most abundant prokaryotic phylotypes, belonging to Actinobacteria, were recovered from all sites both years, suggesting that these Actinobacteria could be important key players in MR ecosystem functioning

    Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study

    Full text link
    So far only little is known about the microbial ecology of Mediterranean deep‐sea hypersaline anoxic lakes (DHALs). These brine lakes were formed by evaporite dissolution/brine seeps and are important model environments to provide insights into possible metabolisms and distributions of microorganisms on the early Earth. Our study on the Lake Thetis, a new thalassohaline DHAL located South‐East of the Medriff Corridor, has revealed microbial communities of contrasting compositions with a high number of novel prokaryotic candidate divisions. The major finding of our present work is co‐occurrence of at least three autotrophic carbon dioxide fixation pathways in the brine–seawater interface that are likely fuelled by an active ramified sulphur cycle. Genes for the reductive acetyl‐CoA and reductive TCA pathways were also found in the brine suggesting that these pathways are operational even at extremely elevated salinities and that autotrophy is more important in hypersaline environments than previously assumed. Surprisingly, genes coding for RuBisCo were found in the highly reduced brine. Three types of sulphide oxidation pathways were found in the interface. The first involves a multienzyme Sox complex catalysing the complete oxidation of reduced sulphur compounds to sulphate, the second type recruits SQR sulphide:quinone reductase for oxidation of sulphide to elemental sulphur, which, in the presence of sulphide, could further be reduced by polysulphide reductases in the third pathway. The presence of the latter two allows a maximal energy yield from the oxidation of sulphide and at the same time prevents the acidification and the accumulation of S0 deposits. Amino acid composition analysis of deduced proteins revealed a significant overrepresentation of acidic residues in the brine compared with the interface. This trait is typical for halophilic organisms as an adaptation to the brine's extreme hypersalinity. This work presents the first metagenomic survey of the microbial communities of the recently discovered Lake Thetis whose brine constitutes one of saltiest water bodies ever reported
    corecore