167 research outputs found
Subclinical cardiopulmonary dysfunction in stage 3 chronic kidney disease.
OBJECTIVE: Reduced exercise capacity is well documented in end-stage chronic kidney disease (CKD), preceded by changes in cardiac morphology in CKD stage 3. However, it is unknown whether subclinical cardiopulmonary dysfunction occurs in CKD stage 3 independently of heart failure. METHODS: Prospective observational cross-sectional study of exercise capacity assessed by cardiopulmonary exercise testing in 993 preoperative patients. Primary outcome was peak oxygen consumption (VO2peak). Anaerobic threshold (AT), oxygen pulse and exercise-evoked measures of autonomic function were analysed, controlling for CKD stage 3, age, gender, diabetes mellitus and hypertension. RESULTS: CKD stage 3 was present in 93/993 (9.97%) patients. Diabetes mellitus (RR 2.49 (95% CI 1.59 to 3.89); p<0.001), and hypertension (RR 3.20 (95% CI 2.04 to 5.03); p<0.001)) were more common in CKD stage 3. Cardiac failure (RR 0.83 (95% CI 0.30 to 2.24); p=0.70) and ischaemic heart disease (RR 1.40 (95% CI 0.97 to 2.02); p=0.09) were not more common in CKD stage 3. Patients with CKD stage 3 had lower predicted VO2peak (mean difference: 6% (95% CI 1% to 11%); p=0.02), lower peak heart rate (mean difference:9 bpm (95% CI 3 to 14); p=0.03)), lower AT (mean difference: 1.1 mL/min/kg (95% CI 0.4 to 1.7); p<0.001) and impaired heart rate recovery (mean difference: 4 bpm (95% CI 1 to 7); p<0.001)). CONCLUSIONS: Subclinical cardiopulmonary dysfunction in CKD stage 3 is common. This study suggests that maladaptive cardiovascular/autonomic dysfunction may be established in CKD stage 3, preceding pathophysiology reported in end-stage CKD
Sympathetic autonomic dysfunction and impaired cardiovascular performance in higher risk surgical patients: implications for perioperative sympatholysis
OBJECTIVE: Recent perioperative trials have highlighted the urgent need for a better understanding of why sympatholytic drugs intended to reduce myocardial injury are paradoxically associated with harm (stroke, myocardial infarction). We hypothesised that following a standardised autonomic challenge, a subset of patients may demonstrate excessive sympathetic activation which is associated with exercise-induced ischaemia and impaired cardiac output. METHODS: Heart rate rise during unloaded pedalling (zero workload) prior to the onset of cardiopulmonary exercise testing (CPET) was measured in 2 observation cohorts of elective surgical patients. The primary outcome was exercise-evoked, ECG-defined ischaemia (>1 mm depression; lead II) associated with an exaggerated increase in heart rate (EHRR ≥12 bpm based on prognostic data for all-cause cardiac death in preceding epidemiological studies). Secondary outcomes included cardiopulmonary performance (oxygen pulse (surrogate for left ventricular stroke volume), peak oxygen consumption (VO2peak), anaerobic threshold (AT)) and perioperative heart rate. RESULTS: EHRR was present in 40.4-42.7% in both centres (n=232, n=586 patients). Patients with EHRR had higher heart rates perioperatively (p<0.05). Significant ST segment depression during CPET was more common in EHRR patients (relative risk 1.7 (95% CI 1.3 to 2.1); p<0.001). EHRR was associated with 11% (95%CI 7% to 15%) lower predicted oxygen pulse (p<0.0001), consistent with impaired left ventricular function. CONCLUSIONS: EHRR is common and associated with ECG-defined ischaemia and impaired cardiac performance. Perioperative sympatholysis may further detrimentally affect cardiac output in patients with this phenotype
Autonomic regulation of systemic inflammation in humans: A multi-center, blinded observational cohort study.
OBJECTIVE: Experimental animal models demonstrate that autonomic activity regulates systemic inflammation. By contrast, human studies are limited in number and exclusively use heart rate variability (HRV) as an index of cardiac autonomic regulation. HRV measures are primarily dependent on, and need to be corrected for, heart rate. Thus, independent autonomic measures are required to confirm HRV-based findings. Here, the authors sought to replicate the findings of preceding HRV-based studies by using HRV-independent, exercise-evoked sympathetic and parasympathetic measures of cardiac autonomic regulation to examine the relationship between autonomic function and systemic inflammation. METHODS: Sympathetic function was assessed by measuring heart rate changes during unloaded pedaling prior to onset of exercise, divided into quartiles; an anticipatory heart rate (AHRR) rise during this period is evoked by mental stress in many individuals. Parasympathetic function was assessed by heart rate recovery (HRR) 60s after finishing cardiopulmonary exercise testing, divided into quartiles. Parasympathetic dysfunction was defined by delayed heart rate recovery (HRR) ≤12.beats.min-1, a threshold value associated with higher cardiovascular morbidity/mortality in the general population. Systemic inflammation was primarily assessed by neutrophil-lymphocyte ratio (NLR), where a ratio >4 is prognostic across several inflammatory diseases and correlates strongly with elevated plasma levels of pro-inflammatory cytokines. High-sensitivity C-reactive protein (hsCRP) was also measured. RESULTS: In 1624 subjects (65±14y; 67.9% male), lower HRR (impaired vagal activity) was associated with progressively higher NLR (p=0.004 for trend across quartiles). Delayed HRR, recorded in 646/1624 (39.6%) subjects, was associated with neutrophil-lymphocyte ratio >4 (relative risk: 1.43 (95%CI: 1.18-1.74); P=0.0003). Similar results were found for hsCRP (p=0.045). By contrast, AHRR was not associated with NLR (relative risk: 1.24 (95%CI: 0.94-1.65); P=0.14). CONCLUSIONS: Delayed HRR, a robust measure of parasympathetic dysfunction, is independently associated with leukocyte ratios indicative of systemic inflammation. These results further support a role for parasympathetic modulation of systemic inflammation in humans.British Journal of Anaesthesia/Royal College of Anaesthetists’ Basic
Science Career development fellowship [GLA]; UCLH/UCL NIHR Biomedical Research
Centre; British Heart Foundation Programme Grant RG/14/4/30736 [GLA]
Array algorithms for H^2 and H^∞ estimation
Currently, the preferred method for implementing H^2 estimation algorithms is what is called the array form, and includes two main families: square-root array algorithms, that are typically more stable than conventional ones, and fast array algorithms, which, when the system is time-invariant, typically offer an order of magnitude reduction in the computational effort. Using our recent observation that H^∞ filtering coincides with Kalman filtering in Krein space, in this chapter we develop array algorithms for H^∞ filtering. These can be regarded as natural generalizations of their H^2 counterparts, and involve propagating the indefinite square roots of the quantities of interest. The H^∞ square-root and fast array algorithms both have the interesting feature that one does not need to explicitly check for the positivity conditions required for the existence of H^∞ filters. These conditions are built into the algorithms themselves so that an H^∞ estimator of the desired level exists if, and only if, the algorithms can be executed. However, since H^∞ square-root algorithms predominantly use J-unitary transformations, rather than the unitary transformations required in the H^2 case, further investigation is needed to determine the numerical behavior of such algorithms
Computers in the Exam Room: Differences in Physician–Patient Interaction May Be Due to Physician Experience
BACKGROUND: The use of electronic medical records can improve the technical quality of care, but requires a computer in the exam room. This could adversely affect interpersonal aspects of care, particularly when physicians are inexperienced users of exam room computers. OBJECTIVE: To determine whether physician experience modifies the impact of exam room computers on the physician–patient interaction. DESIGN: Cross-sectional surveys of patients and physicians. SETTING AND PARTICIPANTS: One hundred fifty five adults seen for scheduled visits by 11 faculty internists and 12 internal medicine residents in a VA primary care clinic. MEASUREMENTS: Physician and patient assessment of the effect of the computer on the clinical encounter. MAIN RESULTS: Patients seeing residents, compared to those seeing faculty, were more likely to agree that the computer adversely affected the amount of time the physician spent talking to (34% vs 15%, P = 0.01), looking at (45% vs 24%, P = 0.02), and examining them (32% vs 13%, P = 0.009). Moreover, they were more likely to agree that the computer made the visit feel less personal (20% vs 5%, P = 0.017). Few patients thought the computer interfered with their relationship with their physicians (8% vs 8%). Residents were more likely than faculty to report these same adverse effects, but these differences were smaller and not statistically significant. CONCLUSION: Patients seen by residents more often agreed that exam room computers decreased the amount of interpersonal contact. More research is needed to elucidate key tasks and behaviors that facilitate doctor–patient communication in such a setting
Preoperative systemic inflammation and perioperative myocardial injury: prospective observational multicentre cohort study of patients undergoing non-cardiac surgery
Medical Research Council and British Journal of Anaesthesia clinical research training fellowship (grant reference MR/M017974/1) to T.E.F.A.; UK National Institute for Health Research Professorship to R.P.; British Journal ofAnaesthesia/Royal College of Anaesthetists basic science Career Development award, British Oxygen Company research chair grant in anaesthesia from the Royal College of Anaesthetists, and British Heart Foundation Programme Grant (RG/14/4/30736) to G.L.A
Ethnic differences in the association between blood pressure components and chronic kidney disease in middle aged and older Asian adults
10.1186/1471-2369-14-86BMC Nephrology141
Effectiveness of joint mobilisation after cast immobilisation for ankle fracture: a protocol for a randomised controlled trial [ACTRN012605000143628]
BACKGROUND: Passive joint mobilisation is a technique frequently used by physiotherapists to reduce pain, improve joint movement and facilitate a return to activities after injury, but its use after ankle fracture is currently based on limited evidence. The primary aim of this trial is to determine if adding joint mobilisation to a standard exercise programme is effective and cost-effective after cast immobilisation for ankle fracture in adults. METHODS/DESIGN: Ninety participants will be recruited from the physiotherapy departments of three teaching hospitals and randomly allocated to treatment or control groups using a concealed procedure. All participants will perform an exercise programme. Participants in the treatment group will also receive joint mobilisation twice a week for four weeks. Blinded follow-up assessments will be conducted four, 12 and 24 weeks after randomisation. The primary outcome measures will be the Lower Extremity Functional Scale and the Assessment of Quality of Life. Secondary outcomes will include measures of impairments, activity limitation and participation. Data on the use of physiotherapy services and participants' out-of-pocket costs will be collected for the cost-effective and cost-utility analyses. To test the effects of treatment, between-group differences will be examined with analysis of covariance using a regression approach. The primary conclusions will be based on the four-week follow-up data. DISCUSSION: This trial incorporates features known to minimise bias. It uses a pragmatic design to reflect clinical practice and maximise generalisability. Results from this trial will contribute to an evidence-based approach for rehabilitation after ankle fracture
Murine Models for Trypanosoma brucei gambiense Disease Progression—From Silent to Chronic Infections and Early Brain Tropism
Trypanosoma brucei gambiense is responsible for more than 90% of reported cases of human African trypanosomosis (HAT). Infection can last for months or even years without major signs or symptoms of infection, but if left untreated, sleeping sickness is always fatal. In the present study, different T. b. gambiense field isolates from the cerebrospinal fluid of patients with HAT were adapted to growth in vitro. These isolates belong to the homogeneous Group 1 of T. b. gambiense, which is known to induce a chronic infection in humans. In spite of this, these isolates induced infections ranging from chronic to silent in mice, with variations in parasitaemia, mouse lifespan, their ability to invade the CNS and to elicit specific immune responses. In addition, during infection, an unexpected early tropism for the brain as well as the spleen and lungs was observed using bioluminescence analysis. The murine models presented in this work provide new insights into our understanding of HAT and allow further studies of parasite tropism during infection, which will be very useful for the treatment and the diagnosis of the disease
H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation
The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z[superscript AP3]) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z[superscript AP3] interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z[superscript AP3] was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z[superscript AP3] ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z[superscript AP3] ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z[superscript AP3] displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z[superscript AP3] mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.Massachusetts Life Sciences Center (David H. Koch Institute for Integrative Cancer Research at MIT Core Grant P30-CA14051)National Science Foundation (U.S.). Emergent Behaviors of Integrated Cellular Systems (Grant CBET-0939511)MIT Faculty Start-up FundMassachusetts Institute of Technology. Computational and Systems Biology Initiative (Merck & Co. Postdoctoral Fellowship
- …