395 research outputs found
Optimizing Provider Recruitment for Influenza Surveillance Networks
The increasingly complex and rapid transmission dynamics of many infectious diseases necessitates the use of new, more advanced methods for surveillance, early detection, and decision-making. Here, we demonstrate that a new method for optimizing surveillance networks can improve the quality of epidemiological information produced by typical provider-based networks. Using past surveillance and Internet search data, it determines the precise locations where providers should be enrolled. When applied to redesigning the provider-based, influenza-like-illness surveillance network (ILINet) for the state of Texas, the method identifies networks that are expected to significantly outperform the existing network with far fewer providers. This optimized network avoids informational redundancies and is thereby more effective than networks designed by conventional methods and a recently published algorithm based on maximizing population coverage. We show further that Google Flu Trends data, when incorporated into a network as a virtual provider, can enhance but not replace traditional surveillance methods
Deconstruction of the (Paleo)Polyploid Grapevine Genome Based on the Analysis of Transposition Events Involving NBS Resistance Genes
Plants have followed a reticulate type of evolution and taxa have frequently merged via allopolyploidization. A polyploid structure of sequenced genomes has often been proposed, but the chromosomes belonging to putative component genomes are difficult to identify. The 19 grapevine chromosomes are evolutionary stable structures: their homologous triplets have strongly conserved gene order, interrupted by rare translocations. The aim of this study is to examine how the grapevine nucleotide-binding site (NBS)-encoding resistance (NBS-R) genes have evolved in the genomic context and to understand mechanisms for the genome evolution. We show that, in grapevine, i) helitrons have significantly contributed to transposition of NBS-R genes, and ii) NBS-R gene cluster similarity indicates the existence of two groups of chromosomes (named as Va and Vc) that may have evolved independently. Chromosome triplets consist of two Va and one Vc chromosomes, as expected from the tetraploid and diploid conditions of the two component genomes. The hexaploid state could have been derived from either allopolyploidy or the separation of the Va and Vc component genomes in the same nucleus before fusion, as known for Rosaceae species. Time estimation indicates that grapevine component genomes may have fused about 60 mya, having had at least 40â60 mya to evolve independently. Chromosome number variation in the Vitaceae and related families, and the gap between the time of eudicot radiation and the age of Vitaceae fossils, are accounted for by our hypothesis
Screening of anti-dengue activity in methanolic extracts of medicinal plants
<p>Abstract</p> <p>Background</p> <p>Dengue fever regardless of its serotypes has been the most prevalent arthropod-borne viral diseases among the world population. The development of a dengue vaccine is complicated by the antibody-dependent enhancement effect. Thus, the development of a plant-based antiviral preparation promises a more potential alternative in combating dengue disease.</p> <p>Methods</p> <p>Present studies investigated the antiviral effects of standardised methanolic extracts of <it>Andrographis paniculata, Citrus limon, Cymbopogon citratus, Momordica charantia, Ocimum sanctum </it>and <it>Pelargonium citrosum </it>on dengue virus serotype 1 (DENV-1).</p> <p>Results</p> <p><it>O. sanctum </it>contained 88.6% of total flavonoids content, an amount that was the highest among all the six plants tested while the least was detected in <it>M. charantia</it>. In this study, the maximum non-toxic dose (MNTD) of the six medicinal plants was determined by testing the methanolic extracts against Vero E6 cells <it>in vitro</it>. Studies also determined that the MNTD of methanolic extract was in the decreasing order of <it>M. charantia </it>><it>C. limon </it>><it>P. citrosum, O. sanctum </it>><it>A. paniculata </it>><it>C. citratus</it>. Antiviral assay based on cytopathic effects (CPE) denoted by degree of inhibition upon treating DENV1-infected Vero E6 cells with MNTD of six medicinal plants showed that <it>A. paniculata </it>has the most antiviral inhibitory effects followed by <it>M. charantia</it>. These results were further verified with an <it>in vitro </it>inhibition assay using MTT, in which 113.0% and 98.0% of cell viability were recorded as opposed to 44.6% in DENV-1 infected cells. Although methanolic extracts of <it>O. sanctum </it>and <it>C. citratus </it>showed slight inhibition effect based on CPE, a significant inhibition was not reflected in MTT assay. Methanolic extracts of <it>C. limon </it>and <it>P. citrosum </it>did not prevent cytopathic effects or cell death from DENV-1.</p> <p>Conclusions</p> <p>The methanol extracts of <it>A. paniculata </it>and <it>M. charantia </it>possess the ability of inhibiting the activity of DENV-1 in <it>in vitro </it>assays. Both of these plants are worth to be further investigated and might be advantageous as an alternative for dengue treatment.</p
Transcriptional activity of transposable elements in maize
<p>Abstract</p> <p>Background</p> <p>Mobile genetic elements represent a high proportion of the Eukaryote genomes. In maize, 85% of genome is composed by transposable elements of several families. First step in transposable element life cycle is the synthesis of an RNA, but few is known about the regulation of transcription for most of the maize transposable element families. Maize is the plant from which more ESTs have been sequenced (more than two million) and the third species in total only after human and mice. This allowed us to analyze the transcriptional activity of the maize transposable elements based on EST databases.</p> <p>Results</p> <p>We have investigated the transcriptional activity of 56 families of transposable elements in different maize organs based on the systematic search of more than two million expressed sequence tags. At least 1.5% maize ESTs show sequence similarity with transposable elements. According to these data, the patterns of expression of each transposable element family is variable, even within the same class of elements. In general, transcriptional activity of the <it>gypsy</it>-like retrotransposons is higher compared to other classes. Transcriptional activity of several transposable elements is specially high in shoot apical meristem and sperm cells. Sequence comparisons between genomic and transcribed sequences suggest that only a few copies are transcriptionally active.</p> <p>Conclusions</p> <p>The use of powerful high-throughput sequencing methodologies allowed us to elucidate the extent and character of repetitive element transcription in maize cells. The finding that some families of transposable elements have a considerable transcriptional activity in some tissues suggests that, either transposition is more frequent than previously expected, or cells can control transposition at a post-transcriptional level.</p
Radiation Induces Acute Alterations in Neuronal Function
Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABAARs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study
Serum tumor markers in pediatric osteosarcoma: a summary review
Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention
Discerning natural and anthropogenic organic matter inputs to salt marsh sediments of Ria Formosa lagoon (South Portugal)
Sedimentary organic matter (OM) origin and molecular composition provide useful information to understand carbon cycling in coastal wetlands. Core sediments from threors' Contributionse transects along Ria Formosa lagoon intertidal zone were analysed using analytical pyrolysis (Py-GC/MS) to determine composition, distribution and origin of sedimentary OM. The distribution of alkyl compounds (alkanes, alkanoic acids and alkan-2-ones), polycyclic aromatic hydrocarbons (PAHs), lignin-derived methoxyphenols, linear alkylbenzenes (LABs), steranes and hopanes indicated OM inputs to the intertidal environment from natural-autochthonous and allochthonous-as well as anthropogenic. Several n-alkane geochemical indices used to assess the distribution of main OM sources (terrestrial and marine) in the sediments indicate that algal and aquatic macrophyte derived OM inputs dominated over terrigenous plant sources. The lignin-derived methoxyphenol assemblage, dominated by vinylguaiacol and vinylsyringol derivatives in all sediments, points to large OM contribution from higher plants. The spatial distributions of PAHs (polyaromatic hydrocarbons) showed that most pollution sources were mixed sources including both pyrogenic and petrogenic. Low carbon preference indexes (CPI > 1) for n-alkanes, the presence of UCM (unresolved complex mixture) and the distribution of hopanes (C-29-C-36) and steranes (C-27-C-29) suggested localized petroleum-derived hydrocarbon inputs to the core sediments. Series of LABs were found in most sediment samples also pointing to domestic sewage anthropogenic contributions to the sediment OM.EU Erasmus Mundus Joint Doctorate fellowship (FUECA, University of Cadiz, Spain)EUEuropean Commission [FP7-ENV-2011, 282845, FP7-534 ENV-2012, 308392]MINECO project INTERCARBON [CGL2016-78937-R]info:eu-repo/semantics/publishedVersio
Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 x 10(-8)), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD
- âŠ