7 research outputs found

    New Physics from the Top at the LHC

    Full text link
    The top quark may hold the key to new physics associated with the electroweak symmetry-breaking sector, given its large mass and enhanced coupling to the Higgs sector. We systematically categorize generic interactions of a new particle that couples to the top quark and a neutral particle, which is assumed to be heavy and stable, thus serving as a candidate for cold dark matter. The experimental signatures for new physics involving top quarks and its partners at the Large Hadron Collider (LHC) may be distinctive, yet challenging to disentangle. We optimize the search strategy at the LHC for the decay of the new particle to a top quark plus missing energy and propose the study of its properties, such as its spin and couplings. We find that, at 14 TeV with an integrated luminosity of 100 fb^-1, a spin-zero top partner can be observed at the 5-sigma level for a mass of 675 GeV. A spin-zero particle can be differentiated from spin-1/2 and spin-1 particles at the 5-sigma level with a luminosity of 10 fb^-1.Comment: 19 pages, 7 figures; v2: journal versio

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. full hadronic results

    Get PDF
    We present predictions for top anti-top bottom anti-bottom production at the LHC in next-to-leading order QCD. The precise description of this background process is a prerequisite to observe associated top anti-top Higgs production in the Higgs -> bottom anti-bottom decay channel and to directly measure the top-quark Yukawa coupling at the LHC. The leading-order cross section is extremely sensitive to scale variations. We observe that the traditional scale choice adopted in ATLAS simulations underestimates the top anti-top bottom anti-bottom background by a factor two and introduce a new dynamical scale that stabilizes the perturbative predictions. We study various kinematic distributions and observe that the corrections have little impact on their shapes if standard cuts are applied. In the regime of highly boosted Higgs bosons, which offers better perspectives to observe the top anti-top Higgs signal, we find significant distortions of the kinematic distributions. The one-loop amplitudes are computed using process-independent algebraic manipulations of Feynman diagrams and numerical tensor reduction. We find that this approach provides very high numerical stability and CPU efficiency.Comment: 42 pages, LaTeX, 44 postscript figure
    corecore