6 research outputs found

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Removal of peroxides in polyethylene glycols by vacuum drying: Implications in the stability of biotech and pharmaceutical formulations

    No full text
    The purpose of this study was to investigate the utility of vacuum drying for removing peroxides from polyethylene glycols (PEGs). PEG solutions (PEG 1450 and PEG 20000) containing varying levels of peroxides were prepared by storing under different light and temperature conditions. PEGs containing low and high levels of peroxides were vacuum dried from dilute and concentrated solutions (2.5%, 7.5%, 15%, and 50% wt/vol of PEG 1450 and 2.5%, 7.5%, 15%, and 25% wt/vol of PEG 20000). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange (FOX) colorimetric assay was used to determine the concentration of peroxides. Peroxide content in PEGs increased upon storage. The increase was more pronounced when PEGs were stored at higher temperatures and exposed to light. Vacuum drying at 0.1 mm Hg for 48 hours at 25°C resulted in greater than 90% decrease in the level of peroxides in all cases except when high peroxide containing 25% wt/vol solution of PEG 20000 or 50% wt/vol solution of PEG 1450 were dried. The reduction in the level of peroxides for PEGs dried from high peroxide containing 25% wt/vol solution of PEG 2000 and 50% wt/vol solution of PEG 1450 was found to be 88% and 52%, respectively. Oxidation of methionine in Met-Leu-Phe peptide was significantly reduced when vacuum-dried PEGs were used. Vacuum drying PEG solutions at low pressures is an effective method for the removal of the residual peroxides present in commercially available PEGs
    corecore