1,099 research outputs found
Baryons in the warm-hot intergalactic medium
Approximately 30%-40% of all baryons in the present-day universe reside in a warm-hot intergalactic medium (WHIM), with temperatures in the range 105 \u3c T \u3c 107 K. This is a generic prediction from six hydrodynamic simulations of currently favored structure formation models having a wide variety of numerical methods, input physics, volumes, and spatial resolutions. Most of these warm-hot baryons reside in diffuse large-scale structures with a median overdensity around 10-30, not in virialized objects such as galaxy groups or galactic halos. The evolution of the WHIM is primarily driven by shock heating from gravitational perturbations breaking on mildly nonlinear, nonequilibrium structures such as filaments. Supernova feedback energy and radiative cooling play lesser roles in its evolution. WHIM gas may be consistent with observations of the 0.25 keV X-ray background without being significantly heated by nongravitational processes because the emitting gas is very diffuse. Our results confirm and extend previous work by Cen & Ostriker and Davé et al
F-theory and Neutrinos: Kaluza-Klein Dilution of Flavor Hierarchy
We study minimal implementations of Majorana and Dirac neutrino scenarios in
F-theory GUT models. In both cases the mass scale of the neutrinos m_nu ~
(M_weak)^2/M_UV arises from integrating out Kaluza-Klein modes, where M_UV is
close to the GUT scale. The participation of non-holomorphic Kaluza-Klein mode
wave functions dilutes the mass hierarchy in comparison to the quark and
charged lepton sectors, in agreement with experimentally measured mass
splittings. The neutrinos are predicted to exhibit a "normal" mass hierarchy,
with masses m_3,m_2,m_1 ~ .05*(1,(alpha_GUT)^(1/2),alpha_GUT) eV. When the
interactions of the neutrino and charged lepton sectors geometrically unify,
the neutrino mixing matrix exhibits a mild hierarchical structure such that the
mixing angles theta_23 and theta_12 are large and comparable, while theta_13 is
expected to be smaller and close to the Cabibbo angle: theta_13 ~ theta_C ~
(alpha_GUT)^(1/2) ~ 0.2. This suggests that theta_13 should be near the current
experimental upper bound.Comment: v2: 83 pages, 10 figures, references adde
Computing the vertices of tropical polyhedra using directed hypergraphs
We establish a characterization of the vertices of a tropical polyhedron
defined as the intersection of finitely many half-spaces. We show that a point
is a vertex if, and only if, a directed hypergraph, constructed from the
subdifferentials of the active constraints at this point, admits a unique
strongly connected component that is maximal with respect to the reachability
relation (all the other strongly connected components have access to it). This
property can be checked in almost linear-time. This allows us to develop a
tropical analogue of the classical double description method, which computes a
minimal internal representation (in terms of vertices) of a polyhedron defined
externally (by half-spaces or hyperplanes). We provide theoretical worst case
complexity bounds and report extensive experimental tests performed using the
library TPLib, showing that this method outperforms the other existing
approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section
5 (using directed hypergraphs), detailed appendix; v3: major revision of the
article (adding tropical hyperplanes, alternative method by arrangements,
etc); v4: minor revisio
Histopathology Caused by the Entomopathogenic Fungi, Beauveria bassiana and Metarhizium anisopliae, in the Adult Planthopper, Peregrinus maidis, a Maize Virus Vector
The planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) is an important vector of maize viruses in tropical and subtropical areas. Planthoppers are biologically controlled with several species of entomopathogenic fungi that have been isolated from these insect pests of rice in Asia. Beauveria bassiana (Balsamo-Crivelli) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) appear to be the most useful against planthoppers because of their ease of mass production, storage, virulence, and application. In the present study, adults of P. maidis infected with B. bassiana and M. anisopliae were observed under light and scanning electron microscopy to characterize morphologically the process of infection and the development of these fungi, prior to and after the death of the host. The hydrophobic conidia of both fungal species were able to attach to all body regions, with a preference for surfaces containing hairs. Few germinated conidia were observed on the insect's body surface at 24, 48, and 72 hr post-inoculation. On the cuticular surface of P. maidis treated with B. bassiana and M. anisopliae, bacillus-like bacteria were observed. These microorganisms could be interacting with fungal conidia, playing a role of antibiosis that will not allow the fungal pathogens to germinate and penetrate. In the colonization events observed in this study, the formation and multiplication of hyphal bodies by both fungal species inside the host's body was noted. The host's whole body was invaded by hyphae between five and six days post-inoculation, and body fat was the most affected tissue
Universality, limits and predictability of gold-medal performances at the Olympic Games
Inspired by the Games held in ancient Greece, modern Olympics represent the
world's largest pageant of athletic skill and competitive spirit. Performances
of athletes at the Olympic Games mirror, since 1896, human potentialities in
sports, and thus provide an optimal source of information for studying the
evolution of sport achievements and predicting the limits that athletes can
reach. Unfortunately, the models introduced so far for the description of
athlete performances at the Olympics are either sophisticated or unrealistic,
and more importantly, do not provide a unified theory for sport performances.
Here, we address this issue by showing that relative performance improvements
of medal winners at the Olympics are normally distributed, implying that the
evolution of performance values can be described in good approximation as an
exponential approach to an a priori unknown limiting performance value. This
law holds for all specialties in athletics-including running, jumping, and
throwing-and swimming. We present a self-consistent method, based on normality
hypothesis testing, able to predict limiting performance values in all
specialties. We further quantify the most likely years in which athletes will
breach challenging performance walls in running, jumping, throwing, and
swimming events, as well as the probability that new world records will be
established at the next edition of the Olympic Games.Comment: 8 pages, 3 figures, 1 table. Supporting information files and data
are available at filrad.homelinux.or
Muscle fiber conduction velocity is more affected after eccentric than concentric exercise
It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
Aorto-venous fistula between an abdominal aortic aneurysm and an aberrant renal vein: a case report
<p>Abstract</p> <p>Introduction</p> <p>The potential complications of an abdominal aortic aneurysm include rupture, compression of surrounding structures, thrombo-embolic events and fistula. The most common site of arterio-venous fistula is the inferior vena cava. Fistula involving a renal vein is particularly uncommon.</p> <p>Case presentation</p> <p>This report describes a 54-year-old Caucasian woman who was admitted to the emergency department with fatigue, severe dyspnea and bilateral lower limb edema. In the first instance this anamnesis suggested possible heart failure. In fact, our patient presented with multi-organ system failure due to a fistula between an infra-renal aortic aneurysm and an aberrant retro-aortic renal vein.</p> <p>Conclusions</p> <p>To our knowledge, this is the first report of a woman with a fistula between an infra-renal aortic aneurysm and an aberrant retro-aortic left renal vein. Aorto-venous fistulas may be asymptomatic or may present with symptoms characteristic of arterio-venous shunting and/or aneurysm rupture. This type of fistula is a rare cause of heart failure. Clinical examination and imaging are essential for detection.</p
Heavy Squarks at the LHC
The LHC, with its seven-fold increase in energy over the Tevatron, is capable
of probing regions of SUSY parameter space exhibiting qualitatively new
collider phenomenology. Here we investigate one such region in which first
generation squarks are very heavy compared to the other superpartners. We find
that the production of these squarks, which is dominantly associative, only
becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However,
discovery of this scenario is complicated because heavy squarks decay primarily
into a jet and boosted gluino, yielding a dijet-like topology with missing
energy (MET) pointing along the direction of the second hardest jet. The result
is that many signal events are removed by standard jet/MET anti-alignment cuts
designed to guard against jet mismeasurement errors. We suggest replacing these
anti-alignment cuts with a measurement of jet substructure that can
significantly extend the reach of this channel while still removing much of the
background. We study a selection of benchmark points in detail, demonstrating
that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC
with L~10(100)fb-1
SUSY, the Third Generation and the LHC
We develop a bottom-up approach to studying SUSY with light stops and
sbottoms, but with other squarks and sleptons heavy and beyond reach of the
LHC. We discuss the range of squark, gaugino and Higgsino masses for which the
electroweak scale is radiatively stable over the "little hierarchy" below ~ 10
TeV. We review and expand on indirect constraints on this scenario, in
particular from flavor and CP tests. We emphasize that in this context,
R-parity violation is very well motivated. The phenomenological differences
between Majorana and Dirac gauginos are also discussed. Finally, we focus on
the light subsystem of stops, sbottom and neutralino with R-parity, in order to
probe the current collider bounds. We find that 1/fb LHC bounds are mild and
large parts of the motivated parameter space remain open, while the 10/fb data
can be much more decisive.Comment: 42 pages, 8 figures, 1 table. V2: minor corrections, references adde
- …