563 research outputs found
Early research on the biological effects of microwave radiation: 1940?1960
Two overriding considerations shaped the development of early research on the biological effects of microwave radiation?possible medical application (diathermy) and uncertainty about the hazards of exposure to radar. Reports in the late 1940s and early 1950s of hazards resulting from microwave exposure led to the near abandonment of medical research related to microwave diathermy at the same time that military and industrial concern over hazards grew, culminating in the massive research effort known as ?the Tri-Service program? (1957?1960). Both the early focus on medical application and the later search for hazards played important roles in dictating how this field of research developed as a science
Triboson interpretations of the ATLAS diboson excess
The ATLAS excess in fat jet pair production is kinematically compatible with
the decay of a heavy resonance into two gauge bosons plus an extra particle.
This hypothesis would explain the absence of such a large excess in the
analogous CMS analysis of fat dijet final states, as well as the negative
results of diboson resonance searches in the semi-leptonic decay modes. If the
extra particle is the Higgs boson, this hypothesis might also explain
-statistical fluctuations aside- why the CMS search for WH resonances in the
semi-leptonic channel finds some excess while in the fully hadronic one it does
not have a significant deviation.Comment: LaTeX 17 pages. v2: Enlarged discussion to address CMS WH excess. v3:
Added discussion of diboson helicities. Final version to appear in JHE
R-parity violating resonant stop production at the Large Hadron Collider
We have investigated the resonant production of a stop at the Large Hadron
Collider, driven by baryon number violating interactions in supersymmetry. We
work in the framework of minimal supergravity models with the lightest
neutralino being the lightest supersymmetric particle which decays within the
detector. We look at various dilepton and trilepton final states, with or
without b-tags. A detailed background simulation is performed, and all possible
decay modes of the lighter stop are taken into account. We find that higher
stop masses are sometimes easier to probe, through the decay of the stop into
the third or fourth neutralino and their subsequent cascades. We also comment
on the detectability of such signals during the 7 TeV run, where, as expected,
only relatively light stops can be probed. Our conclusion is that the resonant
process may be probed, at both 10 and 14 TeV, with the R-parity violating
coupling {\lambda}"_{312} as low as 0.05, for a stop mass of about 1 TeV. The
possibility of distinguishing between resonant stop production and
pair-production is also discussed.Comment: 20 pages, 4 figures, 6 tables; Version accepted by JHE
The fine-tuning price of the early LHC
LHC already probed and excluded half of the parameter space of the
Constrained Minimal Supersymmetric Standard Model allowed by previous
experiments. Only about 0.3% of the CMSSM parameter space survives. This
fraction rises to about 0.9% if the bound on the Higgs mass can be
circumvented.Comment: 7 pages. v3: updated with new bounds from ATLAS and CMS at 1.1/fb
presented at the EPS-HEP-2011 conferenc
Spin Discrimination in Three-Body Decays
The identification of the correct model for physics beyond the Standard Model
requires the determination of the spin of new particles. We investigate to
which extent the spin of a new particle can be identified in scenarios
where it decays dominantly in three-body decays . Here we
assume that is a candidate for dark matter and escapes direct detection at
a high energy collider such as the LHC. We show that in the case that all
intermediate particles are heavy, one can get information on the spins of
and at the LHC by exploiting the invariant mass distribution of the two
standard model fermions. We develop a model-independent strategy to determine
the spins without prior knowledge of the unknown couplings and test it in a
series of Monte Carlo studies.Comment: 31+1 pages, 4 figures, 8 tables, JHEP.cls include
Dark Matter, Muon g-2 and Other SUSY Constraints
Recent developments constraining the SUSY parameter space are reviewed within
the framework of SUGRA GUT models. The WMAP data is seen to reduce the error in
the density of cold dark matter by about a factor of four, implying that the
lightest stau is only 5 -10 GeV heavier than the lightest neutralino when m_0,
m_{1/2} < 1 TeV. The CMD-2 re-analysis of their data has reduced the
disagreement between the Standard Model prediction and the Brookhaven
measurement of the muon magnetic moment to 1.9 sigma, while using the tau decay
data plus CVC, the disagreement is 0.7 sigma. (However, the two sets of data
remain inconsistent at the 2.9 sigma level.) The recent Belle and BABAR
measurements of the B -> phi K CP violating parameters and branching ratios are
discussed. They are analyzed theoretically within the BBNS improved
factorization method. The CP parameters are in disagreement with the Standard
Model at the 2.7 sigma level, and the branching ratios are low by a factor of
two or more over most of the parameter space. It is shown that both anomalies
can naturally be accounted for by adding a non-universal cubic soft breaking
term at M_G mixing the second and third generations.Comment: 16 pages, 7 figures, plenary talk at Beyond The Desert '03, Castle
Ringberg, Germany, June 9, 2003. Typos correcte
Top Quarks as a Window to String Resonances
We study the discovery potential of string resonances decaying to
final state at the LHC. We point out that top quark pair production is a
promising and an advantageous channel for studying such resonances, due to
their low Standard Model background and unique kinematics. We study the
invariant mass distribution and angular dependence of the top pair production
cross section via exchanges of string resonances. The mass ratios of these
resonances and the unusual angular distribution may help identify their
fundamental properties and distinguish them from other new physics. We find
that string resonances for a string scale below 4 TeV can be detected via the
channel, either from reconstructing the semi-leptonic
decay or recent techniques in identifying highly boosted tops.Comment: 22 pages, 6 figure
Stop the Top Background of the Stop Search
The main background for the supersymmetric stop direct production search
comes from Standard Model ttbar events. For the single-lepton search channel,
we introduce a few kinematic variables to further suppress this background by
focusing on its dileptonic and semileptonic topologies. All are defined to have
end points in the background, but not signal distributions. They can
substantially improve the stop signal significance and mass reach when combined
with traditional kinematic variables such as the total missing transverse
energy. Among them, our variable M^W_T2 has the best overall performance
because it uses all available kinematic information, including the on-shell
mass of both W's. We see 20%-30% improvement on the discovery significance and
estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an
exclusion limit of 650-700 GeV for direct stop production, as long as the stop
decays dominantly to the top quark and a light stable neutralino. Most of the
mass range required for the supersymmetric solution of the naturalness problem
in the standard scenario can be covered.Comment: 16 pages, 5 figure
Casting Light on Dark Matter
The prospects for detecting a candidate supersymmetric dark matter particle
at the LHC are reviewed, and compared with the prospects for direct and
indirect searches for astrophysical dark matter. The discussion is based on a
frequentist analysis of the preferred regions of the Minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry breaking (the
CMSSM). LHC searches may have good chances to observe supersymmetry in the near
future - and so may direct searches for astrophysical dark matter particles,
whereas indirect searches may require greater sensitivity, at least within the
CMSSM.Comment: 16 pages, 13 figures, contribution to the proceedings of the LEAP
2011 Conferenc
Maverick dark matter at colliders
Assuming that dark matter is a weakly interacting massive particle (WIMP)
species X produced in the early Universe as a cold thermal relic, we study the
collider signal of pp or ppbar -> XXbar + jets and its distinguishability from
standard-model background processes associated with jets and missing energy. We
assume that the WIMP is the sole particle related to dark matter within reach
of the LHC--a "maverick" particle--and that it couples to quarks through a
higher dimensional contact interaction. We simulate the WIMP final-state signal
XXbar + jet and dominant standard-model (SM) background processes and find that
the dark-matter production process results in higher energies for the colored
final state partons than do the standard-model background processes, resulting
in more QCD radiation and a higher jet multiplicity. As a consequence, the
detectable signature of maverick dark matter is an excess over standard-model
expectations of events consisting of large missing transverse energy, together
with large leading jet transverse momentum and scalar sum of the transverse
momenta of the jets. Existing Tevatron data and forthcoming LHC data can
constrain (or discover!) maverick dark matter.Comment: 11 pages, 7 figure
- …