43 research outputs found

    Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer

    Get PDF
    Recent evidence suggests that Runt-related transcription factors play a role in different human tumours. In the present study, the localisation of the Runt-related transcription factor-2 (Runx2), its transcriptional activity, as well as its regulation of expression was analysed in human pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time PCR and immunohistochemistry were used for Runx2 expression and localisation analysis. Runt-related transcription factor-2 expression was silenced using specific siRNA oligonucleotides in pancreatic cancer cells (Panc-1) and immortalised pancreatic stellate cells (IPSCs). Overexpression of Runx2 was achieved using a full-length expression vector. TGF-β1, BMP2, and other cytokines were assessed for their potential to regulate Runx2 expression. There was a 6.1-fold increase in median Runx2 mRNA levels in PDAC tissues compared to normal pancreatic tissues (P<0.0001). Runt-related transcription factor-2 was localised in pancreatic cancer cells, tubular complexes, and PanIN lesions of PDAC tissues as well as in tumour-associated fibroblasts/stellate cells. Coculture of IPSCs and Panc-1 cells, as well as treatment with TGF-β1 and BMP2, led to increased Runx2 expression in Panc-1 cells. Runt-related transcription factor-2 overexpression was associated with decreased MMP1 release as well as decreased growth and invasion of Panc-1 cells. These effects were reversed by Runx2 silencing. In conclusion, Runx2 is overexpressed in PDAC, where it is regulated by certain cytokines such as TGF-β1 and BMP2 in an auto- and paracrine manner. In addition, Runx2 has the potential to regulate the transcription of extracellular matrix modulators such as SPARC and MMP1, thereby influencing the tumour microenvironment

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Photochemistry of Transition Metal Complexes Induced by Outer-Sphere Charge Transfer Excitation

    Get PDF
    The intermolecular (outer sphere, OS) interaction of a reducing and an oxidizing metal complex generates a new optical transition involving charge transfer (CT) from the electron donor to the acceptor. OS CT transitions are classified according to the redox site (metal or ligand). Generally, the interaction between donor and acceptor is facilitated by ion pairs consisting of an oxidizing complex cation and a reducing complex anion. There are also ion pairs which are composed of a metal complex and an organic counter ion as electron donor or acceptor. In addition, the review includes examples of OS CT interaction which do not involve ion pairs at all. — A short introduction into the theory is followed by the discussion of the spectroscopy of OS CT of transition metal complexes. Finally, photoreactions induced by OS CT transitions are reviewed. The optical transfer is frequently followed by a rapid back electron transfer which regenerates the starting complexes. In many cases the primary products are kinetically labile and substitution reactions compete successfully with back electron transfer. As a result stable redox products may be formed. As an alternative, the substitution can be followed by back electron transfer. Product formation appears then as a substitution of the starting complexes. The various possibilities are illustrated by appropriate examples

    Comparative study between computational and experimental results for binary rarefied gas flows through long microchannels

    No full text
    A comparative study between computational and experimental results for pressure-driven binary gas flows through long microchannels is performed. The theoretical formulation is based on the McCormack kinetic model and the computational results are valid in the whole range of the Knudsen number. Diffusion effects are taken into consideration. The experimental work is based on the Constant Volume Method, and the results are in the slip and transition regime. Using both approaches, the molar flow rates of the He-Ar gas mixture flowing through a rectangular microchannel are estimated for a wide range of pressure drops between the upstream and downstream reservoirs and several mixture concentrations varying from pure He to pure Ar. In all cases, a very good agreement is found, within the margins of the introduced modeling and measurement uncertainties. In addition, computational results for the pressure and concentration distributions along the channel are provided. As far as the authors are aware of, this is the first detailed and complete comparative study between theory and experiment for gaseous flows through long microchannels in the case of binary mixtures
    corecore