5,125 research outputs found

    The statistics of radio pulsars: A spark model

    Get PDF
    We use Monte Carlo techniques to relate a theoretical pulsar emission model to the observed distributions of pulse period, magnetic field strength, distance, and luminosity of radio pulsars. We assume that the radio luminosity of pulsars is proportional to the gap potential and current flow from the polar cap. The current is assumed to be nonuniform and clustered in sparks, but only those sparks swept by the line of sight contribute to the observed radio luminosity. We test our model by using the Ruderman-Sutherland vacuum gap potential and find that the simulated distributions are consistent with those observed, with the exception of the period distribution. The model predicts more long-period pulsars than are observed. This discrepancy may result from the model itself, a reduced sensitivity of surveys to long-period pulsars, or the nondipole spin-down of pulsars.published_or_final_versio

    Reconstructing particle masses from pairs of decay chains

    Full text link
    A method is proposed for determining the masses of the new particles N,X,Y,Z in collider events containing a pair of effectively identical decay chains Z to Y+jet, Y to X+l_1, X to N+l_2, where l_1, l_2 are opposite-sign same-flavour charged leptons and N is invisible. By first determining the upper edge of the dilepton invariant mass spectrum, we reduce the problem to a curve for each event in the 3-dimensional space of mass-squared differences. The region through which most curves pass then determines the unknown masses. A statistical approach is applied to take account of mismeasurement of jet and missing momenta. The method is easily visualized and rather robust against combinatorial ambiguities and finite detector resolution. It can be successful even for small event samples, since it makes full use of the kinematical information from every event.Comment: 12 pages, 5 figure

    Stop the Top Background of the Stop Search

    Get PDF
    The main background for the supersymmetric stop direct production search comes from Standard Model ttbar events. For the single-lepton search channel, we introduce a few kinematic variables to further suppress this background by focusing on its dileptonic and semileptonic topologies. All are defined to have end points in the background, but not signal distributions. They can substantially improve the stop signal significance and mass reach when combined with traditional kinematic variables such as the total missing transverse energy. Among them, our variable M^W_T2 has the best overall performance because it uses all available kinematic information, including the on-shell mass of both W's. We see 20%-30% improvement on the discovery significance and estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an exclusion limit of 650-700 GeV for direct stop production, as long as the stop decays dominantly to the top quark and a light stable neutralino. Most of the mass range required for the supersymmetric solution of the naturalness problem in the standard scenario can be covered.Comment: 16 pages, 5 figure

    General analysis of signals with two leptons and missing energy at the Large Hadron Collider

    Full text link
    A signal of two leptons and missing energy is challenging to analyze at the Large Hadron Collider (LHC) since it offers only few kinematical handles. This signature generally arises from pair production of heavy charged particles which each decay into a lepton and a weakly interacting stable particle. Here this class of processes is analyzed with minimal model assumptions by considering all possible combinations of spin 0, 1/2 or 1, and of weak iso-singlets, -doublets or -triplets for the new particles. Adding to existing work on mass and spin measurements, two new variables for spin determination and an asymmetry for the determination of the couplings of the new particles are introduced. It is shown that these observables allow one to independently determine the spin and the couplings of the new particles, except for a few cases that turn out to be indistinguishable at the LHC. These findings are corroborated by results of an alternative analysis strategy based on an automated likelihood test.Comment: 18 pages, 3 figures, LaTe

    Multiple D4-D2-D0 on the Conifold and Wall-crossing with the Flop

    Full text link
    We study the wall-crossing phenomena of D4-D2-D0 bound states with two units of D4-brane charge on the resolved conifold. We identify the walls of marginal stability and evaluate the discrete changes of the BPS indices by using the Kontsevich-Soibelman wall-crossing formula. In particular, we find that the field theories on D4-branes in two large radius limits are properly connected by the wall-crossings involving the flop transition of the conifold. We also find that in one of the large radius limits there are stable bound states of two D4-D2-D0 fragments.Comment: 24 pages, 4 figures; v2: typos corrected, minor changes, a reference adde

    Wall-crossing of D4-D2-D0 and flop of the conifold

    Full text link
    We discuss the wall-crossing of the BPS bound states of a non-compact holomorphic D4-brane with D2 and D0-branes on the conifold. We use the Kontsevich-Soibelman wall-crossing formula and analyze the BPS degeneracy in various chambers. In particular we obtain a relation between BPS degeneracies in two limiting attractor chambers related by a flop transition. Our result is consistent with known results and predicts BPS degeneracies in all chambers.Comment: 15 pages, 4 figures; v2: typos corrected; v3: minor changes, a reference added, version to be published in JHE

    Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model

    Full text link
    Recent LHC data significantly extend the exclusion limits for supersymmetric particles, particularly in the jets plus missing transverse momentum channels. The most recent such data have so far been interpreted by the experiment in only two different supersymmetry breaking models: the constrained minimal supersymmetric standard model (CMSSM) and a simplified model with only squarks and gluinos and massless neutralinos. We compare kinematical distributions of supersymmetric signal events predicted by the CMSSM and anomaly mediated supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We obtain a lower limit of 900 GeV on squark and gluino masses at the 95% confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure

    Evidence for Duality of Conifold from Fundamental String

    Full text link
    We study the spectrum of BPS D5-D3-F1 states in type IIB theory, which are proposed to be dual to D4-D2-D0 states on the resolved conifold in type IIA theory. We evaluate the BPS partition functions for all values of the moduli parameter in the type IIB side, and find them completely agree with the results in the type IIA side which was obtained by using Kontsevich-Soibelman's wall-crossing formula. Our result is a quite strong evidence for string dualities on the conifold.Comment: 24 pages, 13 figures, v2: typos corrected, v3: explanations about wall-crossing improved and figures adde

    Discrimination of low missing energy look-alikes at the LHC

    Full text link
    The problem of discriminating possible scenarios of TeV scale new physics with large missing energy signature at the Large Hadron Collider (LHC) has received some attention in the recent past. We consider the complementary, and yet unexplored, case of theories predicting much softer missing energy spectra. As there is enough scope for such models to fake each other by having similar final states at the LHC, we have outlined a systematic method based on a combination of different kinematic features which can be used to distinguish among different possibilities. These features often trace back to the underlying mass spectrum and the spins of the new particles present in these models. As examples of "low missing energy look-alikes", we consider Supersymmetry with R-parity violation, Universal Extra Dimensions with both KK-parity conserved and KK-parity violated and the Littlest Higgs model with T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed Monte Carlo analysis of the four and higher lepton final states predicted by these models, we show that the models in their minimal forms may be distinguished at the LHC, while non-minimal variations can always leave scope for further confusion. We find that, for strongly interacting new particle mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one figure added, ordering of certain sections changed, minor modifications in the abstract, version as published in JHE

    SUSY parameter determination at the LHC using cross sections and kinematic edges

    Full text link
    We study the determination of supersymmetric parameters at the LHC from a global fit including cross sections and edges of kinematic distributions. For illustration, we focus on a minimal supergravity scenario and discuss how well it can be constrained at the LHC operating at 7 and 14 TeV collision energy, respectively. We find that the inclusion of cross sections greatly improves the accuracy of the SUSY parameter determination, and allows to reliably extract model parameters even in the initial phase of LHC data taking with 7 TeV collision energy and 1/fb integrated luminosity. Moreover, cross section information may be essential to study more general scenarios, such as those with non-universal gaugino masses, and distinguish them from minimal, universal, models.Comment: 22 pages, 8 figure
    corecore