5,125 research outputs found
The statistics of radio pulsars: A spark model
We use Monte Carlo techniques to relate a theoretical pulsar emission model to the observed distributions of pulse period, magnetic field strength, distance, and luminosity of radio pulsars. We assume that the radio luminosity of pulsars is proportional to the gap potential and current flow from the polar cap. The current is assumed to be nonuniform and clustered in sparks, but only those sparks swept by the line of sight contribute to the observed radio luminosity. We test our model by using the Ruderman-Sutherland vacuum gap potential and find that the simulated distributions are consistent with those observed, with the exception of the period distribution. The model predicts more long-period pulsars than are observed. This discrepancy may result from the model itself, a reduced sensitivity of surveys to long-period pulsars, or the nondipole spin-down of pulsars.published_or_final_versio
Reconstructing particle masses from pairs of decay chains
A method is proposed for determining the masses of the new particles N,X,Y,Z
in collider events containing a pair of effectively identical decay chains Z to
Y+jet, Y to X+l_1, X to N+l_2, where l_1, l_2 are opposite-sign same-flavour
charged leptons and N is invisible. By first determining the upper edge of the
dilepton invariant mass spectrum, we reduce the problem to a curve for each
event in the 3-dimensional space of mass-squared differences. The region
through which most curves pass then determines the unknown masses. A
statistical approach is applied to take account of mismeasurement of jet and
missing momenta. The method is easily visualized and rather robust against
combinatorial ambiguities and finite detector resolution. It can be successful
even for small event samples, since it makes full use of the kinematical
information from every event.Comment: 12 pages, 5 figure
Stop the Top Background of the Stop Search
The main background for the supersymmetric stop direct production search
comes from Standard Model ttbar events. For the single-lepton search channel,
we introduce a few kinematic variables to further suppress this background by
focusing on its dileptonic and semileptonic topologies. All are defined to have
end points in the background, but not signal distributions. They can
substantially improve the stop signal significance and mass reach when combined
with traditional kinematic variables such as the total missing transverse
energy. Among them, our variable M^W_T2 has the best overall performance
because it uses all available kinematic information, including the on-shell
mass of both W's. We see 20%-30% improvement on the discovery significance and
estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an
exclusion limit of 650-700 GeV for direct stop production, as long as the stop
decays dominantly to the top quark and a light stable neutralino. Most of the
mass range required for the supersymmetric solution of the naturalness problem
in the standard scenario can be covered.Comment: 16 pages, 5 figure
General analysis of signals with two leptons and missing energy at the Large Hadron Collider
A signal of two leptons and missing energy is challenging to analyze at the
Large Hadron Collider (LHC) since it offers only few kinematical handles. This
signature generally arises from pair production of heavy charged particles
which each decay into a lepton and a weakly interacting stable particle. Here
this class of processes is analyzed with minimal model assumptions by
considering all possible combinations of spin 0, 1/2 or 1, and of weak
iso-singlets, -doublets or -triplets for the new particles. Adding to existing
work on mass and spin measurements, two new variables for spin determination
and an asymmetry for the determination of the couplings of the new particles
are introduced. It is shown that these observables allow one to independently
determine the spin and the couplings of the new particles, except for a few
cases that turn out to be indistinguishable at the LHC. These findings are
corroborated by results of an alternative analysis strategy based on an
automated likelihood test.Comment: 18 pages, 3 figures, LaTe
Multiple D4-D2-D0 on the Conifold and Wall-crossing with the Flop
We study the wall-crossing phenomena of D4-D2-D0 bound states with two units
of D4-brane charge on the resolved conifold. We identify the walls of marginal
stability and evaluate the discrete changes of the BPS indices by using the
Kontsevich-Soibelman wall-crossing formula. In particular, we find that the
field theories on D4-branes in two large radius limits are properly connected
by the wall-crossings involving the flop transition of the conifold. We also
find that in one of the large radius limits there are stable bound states of
two D4-D2-D0 fragments.Comment: 24 pages, 4 figures; v2: typos corrected, minor changes, a reference
  adde
Wall-crossing of D4-D2-D0 and flop of the conifold
We discuss the wall-crossing of the BPS bound states of a non-compact
holomorphic D4-brane with D2 and D0-branes on the conifold. We use the
Kontsevich-Soibelman wall-crossing formula and analyze the BPS degeneracy in
various chambers. In particular we obtain a relation between BPS degeneracies
in two limiting attractor chambers related by a flop transition. Our result is
consistent with known results and predicts BPS degeneracies in all chambers.Comment: 15 pages, 4 figures; v2: typos corrected; v3: minor changes, a
  reference added, version to be published in JHE
Interpreting a 1 fb^-1 ATLAS Search in the Minimal Anomaly Mediated Supersymmetry Breaking Model
Recent LHC data significantly extend the exclusion limits for supersymmetric
particles, particularly in the jets plus missing transverse momentum channels.
The most recent such data have so far been interpreted by the experiment in
only two different supersymmetry breaking models: the constrained minimal
supersymmetric standard model (CMSSM) and a simplified model with only squarks
and gluinos and massless neutralinos. We compare kinematical distributions of
supersymmetric signal events predicted by the CMSSM and anomaly mediated
supersymmetry breaking (mAMSB) before calculating exclusion limits in mAMSB. We
obtain a lower limit of 900 GeV on squark and gluino masses at the 95%
confidence level for the equal mass limit, tan(beta)=10 and mu>0.Comment: 18 pages, 11 figure
Evidence for Duality of Conifold from Fundamental String
We study the spectrum of BPS D5-D3-F1 states in type IIB theory, which are
proposed to be dual to D4-D2-D0 states on the resolved conifold in type IIA
theory. We evaluate the BPS partition functions for all values of the moduli
parameter in the type IIB side, and find them completely agree with the results
in the type IIA side which was obtained by using Kontsevich-Soibelman's
wall-crossing formula. Our result is a quite strong evidence for string
dualities on the conifold.Comment: 24 pages, 13 figures, v2: typos corrected, v3: explanations about
  wall-crossing improved and figures adde
Discrimination of low missing energy look-alikes at the LHC
The problem of discriminating possible scenarios of TeV scale new physics
with large missing energy signature at the Large Hadron Collider (LHC) has
received some attention in the recent past. We consider the complementary, and
yet unexplored, case of theories predicting much softer missing energy spectra.
As there is enough scope for such models to fake each other by having similar
final states at the LHC, we have outlined a systematic method based on a
combination of different kinematic features which can be used to distinguish
among different possibilities. These features often trace back to the
underlying mass spectrum and the spins of the new particles present in these
models. As examples of "low missing energy look-alikes", we consider
Supersymmetry with R-parity violation, Universal Extra Dimensions with both
KK-parity conserved and KK-parity violated and the Littlest Higgs model with
T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed
Monte Carlo analysis of the four and higher lepton final states predicted by
these models, we show that the models in their minimal forms may be
distinguished at the LHC, while non-minimal variations can always leave scope
for further confusion. We find that, for strongly interacting new particle
mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories
can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated
luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one
  figure added, ordering of certain sections changed, minor modifications in
  the abstract, version as published in JHE
SUSY parameter determination at the LHC using cross sections and kinematic edges
We study the determination of supersymmetric parameters at the LHC from a
global fit including cross sections and edges of kinematic distributions. For
illustration, we focus on a minimal supergravity scenario and discuss how well
it can be constrained at the LHC operating at 7 and 14 TeV collision energy,
respectively. We find that the inclusion of cross sections greatly improves the
accuracy of the SUSY parameter determination, and allows to reliably extract
model parameters even in the initial phase of LHC data taking with 7 TeV
collision energy and 1/fb integrated luminosity. Moreover, cross section
information may be essential to study more general scenarios, such as those
with non-universal gaugino masses, and distinguish them from minimal,
universal, models.Comment: 22 pages, 8 figure
- …
