691 research outputs found

    Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene

    Get PDF
    A large body of evidence strongly suggests that the p53 tumor suppressor pathway is central in reducing cancer frequency in vertebrates. The protein product of the haploinsufficient mouse double minute 2 (MDM2) oncogene binds to and inhibits the p53 protein. Recent studies of human genetic variants in p53 and MDM2 have shown that single nucleotide polymorphisms (SNPs) can affect p53 signaling, confer cancer risk, and suggest that the pathway is under evolutionary selective pressure (1–4). In this report, we analyze the haplotype structure of MDM4, a structural homolog of MDM2, in several different human populations. Unusual patterns of linkage disequilibrium (LD) in the haplotype distribution of MDM4 indicate the presence of candidate SNPs that may also modify the efficacy of the p53 pathway. Association studies in 5 different patient populations reveal that these SNPs in MDM4 confer an increased risk for, or early onset of, human breast and ovarian cancers in Ashkenazi Jewish and European cohorts, respectively. This report not only implicates MDM4 as a key regulator of tumorigenesis in the human breast and ovary, but also exploits for the first time evolutionary driven linkage disequilibrium as a means to select SNPs of p53 pathway genes that might be clinically relevant

    Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene

    Get PDF
    A large body of evidence strongly suggests that the p53 tumor suppressor pathway is central in reducing cancer frequency in vertebrates. The protein product of the haploinsufficient mouse double minute 2 (MDM2) oncogene binds to and inhibits the p53 protein. Recent studies of human genetic variants in p53 and MDM2 have shown that single nucleotide polymorphisms (SNPs) can affect p53 signaling, confer cancer risk, and suggest that the pathway is under evolutionary selective pressure (1–4). In this report, we analyze the haplotype structure of MDM4, a structural homolog of MDM2, in several different human populations. Unusual patterns of linkage disequilibrium (LD) in the haplotype distribution of MDM4 indicate the presence of candidate SNPs that may also modify the efficacy of the p53 pathway. Association studies in 5 different patient populations reveal that these SNPs in MDM4 confer an increased risk for, or early onset of, human breast and ovarian cancers in Ashkenazi Jewish and European cohorts, respectively. This report not only implicates MDM4 as a key regulator of tumorigenesis in the human breast and ovary, but also exploits for the first time evolutionary driven linkage disequilibrium as a means to select SNPs of p53 pathway genes that might be clinically relevant

    MDM2 Promoter SNP344T>A (rs1196333) Status Does Not Affect Cancer Risk

    Get PDF
    The MDM2 proto-oncogene plays a key role in central cellular processes like growth control and apoptosis, and the gene locus is frequently amplified in sarcomas. Two polymorphisms located in the MDM2 promoter P2 have been shown to affect cancer risk. One of these polymorphisms (SNP309T>G; rs2279744) facilitates Sp1 transcription factor binding to the promoter and is associated with increased cancer risk. In contrast, SNP285G>C (rs117039649), located 24 bp upstream of rs2279744, and in complete linkage disequilibrium with the SNP309G allele, reduces Sp1 recruitment and lowers cancer risk. Thus, fine tuning of MDM2 expression has proven to be of significant importance with respect to tumorigenesis. We assessed the potential functional effects of a third MDM2 promoter P2 polymorphism (SNP344T>A; rs1196333) located on the SNP309T allele. While in silico analyses indicated SNP344A to modulate TFAP2A, SPIB and AP1 transcription factor binding, we found no effect of SNP344 status on MDM2 expression levels. Assessing the frequency of SNP344A in healthy Caucasians (n = 2,954) and patients suffering from ovarian (n = 1,927), breast (n = 1,271), endometrial (n = 895) or prostatic cancer (n = 641), we detected no significant difference in the distribution of this polymorphism between any of these cancer forms and healthy controls (6.1% in healthy controls, and 4.9%, 5.0%, 5.4% and 7.2% in the cancer groups, respectively). In conclusion, our findings provide no evidence indicating that SNP344A may affect MDM2 transcription or cancer risk

    Digital Transformation in Higher Education: Maturity and Challenges Post COVID-19

    Get PDF
    Digital transformation in higher education, especially after COVID-19 is inevitable. This research explores digital transformation maturity and challenges post COVID-19. The significance of the study does not only stem from the critical role of higher education in building the workforce and knowledge economy. This study triangulates the findings of multiple research instruments, including survey, interviews, case study, and direct observation. The research findings show a significant variance between the respondents’ perception of digital transformations maturity levels, and the core requirements of digital transformation maturity. The findings also show the lack of holistic vision, digital transformation competency, and data structure and processing as the leading challenges of digital transformation

    Genomic hallmarks and therapeutic implications of G0 cell cycle arrest in cancer

    Get PDF
    BACKGROUND: Therapy resistance in cancer is often driven by a subpopulation of cells that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture and whose mutational drivers remain largely unknown. RESULTS: We develop methodology to robustly identify this state from transcriptomic signals and characterise its prevalence and genomic constraints in solid primary tumours. We show that G0 arrest preferentially emerges in the context of more stable, less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA damage repair deficiency, while presenting increased APOBEC mutagenesis. We employ machine learning to uncover novel genomic dependencies of this process and validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms in single-cell data. CONCLUSIONS: We propose a G0 arrest transcriptional signature that is linked with therapeutic resistance and can be used to further study and clinically track this state

    Results based on 124 cases of breast cancer and 97 controls from Taiwan suggest that the single nucleotide polymorphism (SNP309) in the MDM2 gene promoter is associated with earlier onset and increased risk of breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that the single nucleotide polymorphism 309 (SNP309, T -> G) in the promoter region of the MDM2 gene is important for tumor development; however, with regards to breast cancer, inconsistent associations have been reported worldwide. It is speculated that these conflicting results may have arisen due to different patient subgroups and ethnicities studied. For the first time, this study explores the effect of the MDM2 SNP309 genotype on Taiwanese breast cancer patients.</p> <p>Methods</p> <p>Genomic DNA was obtained from the whole blood of 124 breast cancer patients and 97 cancer-free healthy women living in Taiwan. MDM2 SNP309 genotyping was carried out by restriction fragment length polymorphism (RFLP) assay. The multivariate logistic regression and the Kaplan-Meier method were used for analyzing the risk association and significance of age at diagnosis among different MDM2 SNP309 genotypes, respectively.</p> <p>Results</p> <p>Compared to the TT genotype, an increased risk association with breast cancer was apparent for the GG genotype (OR = 3.05, 95% CI = 1.04 to 8.95), and for the TG genotype (OR = 2.12, 95% CI = 0.90 to 5.00) after adjusting for age, cardiovascular disease/diabetes, oral contraceptive usage, and body mass index, which exhibits significant difference between cases and controls. Furthermore, the average ages at diagnosis for breast cancer patients were 53.6, 52 and 47 years for those harboring TT, TG and GG genotypes, respectively. A significant difference in median age of onset for breast cancer between GG and TT+TG genotypes was obtained by the log-rank test (p = 0.0067).</p> <p>Conclusion</p> <p>Findings based on the current sample size suggest that the MDM2 SNP309 GG genotype may be associated with both the risk of breast cancer and an earlier age of onset in Taiwanese women.</p

    Effects of MDM2, MDM4 and TP53 Codon 72 Polymorphisms on Cancer Risk in a Cohort Study of Carriers of TP53 Germline Mutations

    Get PDF
    Previous studies have shown that MDM2 SNP309 and p53 codon 72 have modifier effects on germline P53 mutations, but those studies relied on case-only studies with small sample sizes. The impact of MDM4 polymorphism on tumor onset in germline mutation carriers has not previously been studied.We analyzed 213 p53 germline mutation carriers including 168(78.9%) affected with cancer and 174 who had genotypic data. We analyzed time to first cancer using Kaplan-Meier and Cox proportional hazards methods, comparing risks according to polymorphism genotypes. For MDM2 SNP309, a significant difference of 9.0 years in the average age of cancer diagnosis was observed between GG/GT and TT carriers (18.6 versus 27.6 years, P = 0.0087). The hazards ratio was 1.58 (P = 0.03) comparing risks among individuals with GG/GT to risk among TT, but this effect was only significant in females (HR = 1.60, P = 0.02). Compared to other genotypes, P53 codon 72 PP homozygotes had a 2.24 times (P = 0.03) higher rate for time to develop cancer. We observed a multiplicative joint effect of MDM2 and p53 codon72 polymorphism on risk. The MDM4 polymorphism had no significant effects.Our results suggest that the MDM2 SNP309 G allele is associated with cancer risk in p53 germline mutation carriers and accelerates time to cancer onset with a pronounced effect in females. A multiplicative joint effect exists between the MDM2 SNP309 G allele and the p53 codon 72 G allele in the risk of cancer development. Our results further define cancer risk in carriers of germline p53 mutations
    corecore