11 research outputs found
Increased myofibroblasts in the small airways, and relationship to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition
Introduction: Previous reports have shown epithelial–mesenchymal transition (EMT) as an active processthat contributes to small airway fibrotic pathology. Myofibroblasts are highly active pro-fibrotic cells thatsecrete excessive and altered extracellular matrix (ECM). Here we relate small airway myofibroblastpresence with airway remodelling, physiology and EMT activity in smokers and COPD patients.Methods: Lung resections from nonsmoker controls, normal lung function smokers and COPD currentand ex-smokers were stained with anti-human α-smooth muscle actin (SMA), collagen 1 and fibronectin.αSMA+ cells were computed in reticular basement membrane (Rbm), lamina propria and adventitia andpresented per mm of Rbm and mm2 of lamina propria. Collagen-1 and fibronectin are presented as apercentage change from normal. All analyses including airway thickness were measured using Image-proplus 7.0.Results: We found an increase in subepithelial lamina propria (especially) and adventitia thickness in allpathological groups compared to nonsmoker controls. Increases in αSMA+ myofibroblasts were observedin subepithelial Rbm, lamina propria and adventitia in both the smoker and COPD groups compared tononsmoker controls. Furthermore, the increase in the myofibroblast population in the lamina propria wasstrongly associated with decrease in lung function, lamina propria thickening, increase in ECM proteindeposition, and finally EMT activity in epithelial cells.Conclusions: This is the first systematic characterisation of small airway myofibroblasts in COPD based ontheir localisation, with statistically significant correlations between them and other pan-airway structural,lung function and ECM protein changes. Finally, we suggest that EMT may be involved in such changes
Expression of surfactant protein D in airways of asthmatics and interleukin-13 modulation of surfactant protein D in human models of airway epithelium
Background:
Surfactant protein D (SP-D), a pattern recognition molecule, has been shown to play roles in host defense such as opsonisation, aggregation of pathogens, and modulation of the inflammatory response. In light of infection-induced exacerbations and damage to the airway epithelium from inflammation, these functions of SP-D make it relevant in the development and pathogenesis of asthma.
Methods:
Expression of SP-D was examined in human airway sections and primary airway epithelial cells (AEC) grown in air-liquid interface (ALI) cultures and comparisons were made between those from asthmatic and non-asthmatic donors. ALI cultures of AEC from non-asthmatic donors were examined for SP-D, Mucin 5AC, and cytokeratin-5 expression at different stages of differentiation. Interleukin-13 (IL-13) treatment of airway epithelium and its effect on SP-D expression was studied using ALI and monolayer cultures of primary AEC from non-asthmatic and asthmatic donors.
Results:
Airway epithelium of asthmatics, compared to that of non-asthmatics, expressed increased levels of SP-D as demonstrated in airway tissue sections (fraction of epithelium 0.66 ± 0.026 vs. 0.50 ± 0.043, p = 0.004) and ALI cultures (fraction of epithelium 0.50 ± 0.08 vs. 0.25 ± 0.07). SP-D expression decreased as ALI cultures differentiated from 7 days to 21 days (fraction of epithelium 0.62 ± 0.04 to 0.23 ± 0.03, p = 0.004). Treatment with IL-13 decreased SP-D expression in both ALI cultures (fraction of epithelium 0.21 ± 0.06 vs. 0.62 ± 0.04, p = 0.0005) and monolayer cultures (protein expression fold change 0.62 ± 0.05) of non-asthmatic AEC; however, IL-13 had no significant effect on SP-D expression in monolayer cultures of asthmatic AEC. Experiments with non-asthmatic monolayer cultures indicate IL-13 exert its effect on SP-D through the IL-13 receptor alpha1 and transcription factor STAT6.
Conclusions:
SP-D is expressed differently in airways of asthmatics relative to that of non-asthmatics. This can have implications on the increased susceptibility to infections and altered inflammatory response in asthmatic patients. Future functional studies on the role of SP-D in asthma can provide better insight into defects in the structure and regulation of SP-D.Medicine, Faculty ofReviewedFacult
The many lives of IL-9: a question of survival?
Although the cytokine interleukin 9 (IL-9) was discovered decades ago, it remains one of the most enigmatic cytokines identified so far, in particular because its functional activities remain far from clear. Breakthroughs made through the use of IL-9 reporter mice have allowed the identification of cell types that produce IL-9 in vivo and, contrary to expectations based on previous results obtained in vitro, it is not T cells but instead a previously unknown type of innate lymphoid cell, called the 'ILC2 cell', that is the main cell type that expresses IL-9 in vivo. In this perspective, we put forward a hypothesis about the potential biological functions of IL-9 in the immune system and beyond
IL-13 in LPS-Induced Inflammation Causes Bcl-2 Expression to Sustain Hyperplastic Mucous cells
Abstract Exposure to lipopolysaccharides (LPS) causes extensive neutrophilic inflammation in the airways followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL) fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor, ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the LPS-induced MCH in bik +/+ but not bik −/− mice, suggesting that Bik mediated apoptosis in hyperplastic mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous hypersecretion
The genomic landscape of testicular germ cell tumours: from susceptibility to treatment.
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease