76 research outputs found

    Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches.

    Get PDF
    There are approximately 1 billion prediabetic people worldwide, and the global cost for diabetes mellitus (DM) is estimated to be $825 billion. In regard to Type 1 DM, transplanting a whole pancreas or its islets has gained the attention of researchers in the last few decades. Recent studies showed that islet transplantation (ILT) containing insulin-producing β cells is the most notable advancement cure for Type 1 DM. However, this procedure has been hindered by shortage and lack of sufficient islet donors and the need for long-term immunosuppression of any potential graft rejection. The strategy of encapsulation may avoid the rejection of stem-cell-derived allogeneic islets or xenogeneic islets. This review article describes various biotechnology features in encapsulation-of-islet-cell therapy for humans, including the use of bile acids

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Genetic Analysis Reveals a Longevity-Associated Protein Modulating Endothelial Function and Angiogenesis

    No full text

    Sulfane Sustains Vascular Health

    No full text
    corecore