11 research outputs found

    Developments in the field of allergy in 2008 through the eyes of Clinical & Experimental Allergy

    No full text
    In 2008, many thousands of articles were published on the subject of allergic disease with over 200 reviews, editorials and original papers in Clinical & Experimental Allergy alone. These represent a considerable amount of data and even the most avid reader could only hope to assimilate a small fraction of this knowledge. There is therefore a pressing need for the key messages that emerge from a journal such as Clinical & Experimental Allergy to be summarized by experts in the field in a form that highlights the significance of the developments and sets them in the context of important findings in the field published in other journals. This also has the advantage of making connections between new data in conditions such as asthma, where articles often appear in different sections of the journal. As can be seen from this review, the body of work is diverse both in terms of the disease of interest and the discipline that has been used to investigate it. However, taken as a whole, we hope that the reader will gain a flavour of where the field is mature, where there remain controversies and where the cutting edge is leading

    Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    No full text
    BACKGROUND: Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. METHODS: Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. RESULTS: Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC’s for equisetin were 8 μg mL(−1) against Bacillus subtilis, 16 μg mL(−1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). CONCLUSIONS: O. dillenii, harbors several endophytic fungi capable of producing antimicrobial substances with selective antibacterial properties. By producing biologically active secondary metabolites, such as equisetin isolated from the endophytic Fusarium sp., the endophytic fungal population may be assisting the host to successfully withstand stressful environmental conditions. Further investigations on the secondary metabolites produced by these endophytes may provide additional drug leads

    Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat

    No full text
    Key message: QTL mapping identified key genomic regions associated with adult-plant resistance to tan spot, which are effective even in the presence of the sensitivity gene Tsn1, thus serving as a new genetic solution to develop disease-resistant wheat cultivars. Abstract: Improving resistance to tan spot (Pyrenophora tritici-repentis; Ptr) in wheat by eliminating race-specific susceptibility genes is a common breeding approach worldwide. The potential to exploit variation in quantitative forms of resistance, such as adult-plant resistance (APR), offers an alternative approach that could lead to broad-spectrum protection. We previously identified wheat landraces in the Vavilov diversity panel that exhibited high levels of APR despite carrying the sensitivity gene Tsn1. In this study, we characterised the genetic control of APR by developing a recombinant inbred line population fixed for Tsn1, but segregating for the APR trait. Linkage mapping using DArTseq markers and disease response phenotypes identified a QTL associated with APR to Ptr race 1 (producing Ptr ToxA- and Ptr ToxC) on chromosome 2B (Qts.313-2B), which was consistently detected in multiple adult-plant experiments. Additional loci were also detected on chromosomes 2A, 3D, 5A, 5D, 6A, 6B and 7A at the seedling stage, and on chromosomes 1A and 5B at the adult stage. We demonstrate that Qts.313-2B can be combined with other adult-plant QTL (i.e. Qts.313-1A and Qts.313-5B) to strengthen resistance levels. The APR QTL reported in this study provide a new genetic solution to tan spot in Australia and could be deployed in wheat cultivars, even in the presence of Tsn1, to decrease production losses and reduce the application of fungicide
    corecore