3 research outputs found

    Impacts of Sediments on Coral Energetics: Partitioning the Effects of Turbidity and Settling Particles

    Get PDF
    Sediment loads have long been known to be deleterious to corals, but the effects of turbidity and settling particles have not previously been partitioned. This study provides a novel approach using inert silicon carbide powder to partition and quantify the mechanical effects of sediment settling versus reduced light under a chronically high sedimentary regime on two turbid water corals commonly found in Singapore (Galaxea fascicularis and Goniopora somaliensis). Coral fragmentswere evenly distributed among three treatments: an open control (30% ambient PAR), a shaded control (15% ambient PAR) and sediment treatment (15% ambient PAR; 26.4 mg cm22 day21). The rate of photosynthesis and respiration, and the dark-adapted quantum yield were measured once a week for four weeks. By week four, the photosynthesis to respiration ratio (P/R ratio) and the photosynthetic yield (Fv/Fm) had fallen by 14% and 3–17% respectively in the shaded control,contrasting with corals exposed to sediments whose P/R ratio and yield had declined by 21% and 18–34% respectively. The differences in rates between the shaded control and the sediment treatment were attributed to the mechanical effects of sediment deposition. The physiological response to sediment stress differed between species with G. fascicularis experiencing a greater decline in the net photosynthetic yield (13%) than G. somaliensis (9.5%), but a smaller increase in the respiration rates (G. fascicularis = 9.9%, G. somaliensis = 14.2%). These different physiological responses were attributed, in part, to coral morphology and highlighted key physiological processes that drive species distribution along high to low turbidity and depositional gradients

    Variability in reproductive output across a water quality gradient for a tropical marine sponge

    No full text
    To establish a complete understanding of reproductive variability, larval supply and ultimately population demographics of a species it is important to determine reproduction across a broad spectrum of environmental conditions. This study quantified sexual reproduction of the brooding, gonochoristic sponge Rhopaloeides odorabile from populations across the shelf reefs of the central Great Barrier Reef (GBR). Histological sections of reproductive sponges collected at increasing distances from the coast were used to determine if numbers of reproductive sponges, reproductive output (using a reproductive output index), size at sexual maturity, and sex ratios varied according to their location (distance) from the coastline and therefore from influences of terrigenous/riverine discharge. Significantly higher proportions of reproductive sponges occurred with increasing distance from the coast. The proportion of all reproductive sponges (both male and female) on offshore reefs ranged from 77 to 90%, during November and December, the peak reproductive months of this sponge, compared to 47 to 50% for sponges occurring on coastal reefs. Levels of female reproduction increased with increasing distance from the coastline on two levels. First, oocytes from offshore sponges were significantly larger than oocytes from coastal sponges. Second, sponges from offshore reefs showed a reproductive index (proportions of oocytes, embryos and larvae mm−2) approximately 15 times higher than coastal reef sponges. Therefore, both numbers of oocytes, embryos and larvae in conjunction with larger oocytes contribute to a higher reproductive output index for offshore sponges. The production of spermatic cysts in males was consistent across the GBR. Sex ratios for coastal reef sponges showed a male bias while offshore sponges showed approximate equal sex ratios. The effect of terrigenous riverine input from coastal fluvial plains to the inner GBR is well established and is likely to contribute to the lower levels of reproduction associated with female sponges inhabiting coastal reefs of the central GBR
    corecore