9 research outputs found

    Apropriate Ultrasonic System Components for NDE of Thick Polymer-Composites

    Get PDF
    In certain marine applications, thick polymer-composite materials may have to endure different operating environments than those experienced in traditional aerospace applications. In particular, structures made of such materials may experience very large compressive and bending forces. To prevent in-service failure, appropriate NDE methods and instrumentation are needed to characterize the state of the material. Specifically, in addition to detecting high-contrast anomalies (cracks and delaminations) it may be of interest to determine the pore content, measure the fiber volume, assess the severity of fiber waviness, and the like [1]

    Fuzzy Inference Systems for Invariant Pattern Recognition in MFL NDE

    Get PDF
    Defect related information present in NDE signals is frequently obscured by the presence of operational variables inherent in the system. A typical NDE system comprises of an energy source, a test specimen and a sensor array. Operational variables include uncontrollable changes in source signal strength and/or frequency, variations in the sensitivity of the sensor and alterations in the material properties of the test specimen. These operational variables can confuse subsequent signal interpretation schemes, such as those relying on artificial neural networks. Invariant pattern recognition methods are required to ensure accurate signal characterization in terms of the underlying defect geometry. This paper describes a generalized invariance transformation technique to compensate for operational variables in NDE systems. An application to magnetic flux leakage (MFL) inspection of gas transmission pipelines is presented. The technique is employed to compensate for variations in magnetization characteristics in the pipe wall

    A Cis-Regulatory Map of the Drosophila Genome

    Get PDF
    Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide1, 2 has successfully identified specific subtypes of regulatory elements3. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements4, chromatin states5, transcription factor binding sites6, 7, 8, 9, RNA polymerase II regulation8 and insulator elements10; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships

    A non-contact Vital Signs Monitor

    Get PDF
    The expansion and contraction of the lungs and heart result in movement of the chest wall that can be detected and monitored to determine respiration and heart rate. A prototype noncontact Vital Signs Monitor (VSM) has been developed which uses very low power, high frequency Doppler radar to detect these motions. Digital signal processing (DSP) techniques, imbedded in the VSM, are used to extract heart and respiration rate information from the resultant waveform. A 10-GHz prototype VSM was developed for the Air Force in the mid-1980s using analog technology. The objective was to assess a fallen soldier's clinical condition at distances up to 100 meters before committing resources to assist that individual. An updated and improved version of the original VSM was developed in 1997. This device was designed to operate at shorter distances, use a higher frequency carrier, and provide more specific heart and respiration rate information using digital signal prdcessing techniques. The VSM radar system is a straightforward homodyne receiver. It operates using frequency modulated continuous wave (FM-CW) transmission, which allows for very low power levels. The safe human power density exposure level at its operating frequency of 35 GHz is 10 mW/cm2. A simple approximation using uniform distribution and an antenna aperture of 2 cm by 3 cm gives a power density at the antenna face of 0.017 mW/cm2, nearly a factor of 1000 below the safe level. When the VSM's antenna is trained on the chest wall of a subject, the VSM is capable of measuring and distinguishing minute movements resulting from the mechanical activity of the heart and lungs. As the subject's chest wall moves, the exact phase of the return signal changes. To avoid the possibility of phase-related dead spots, two signals differing in phase by 90 degrees are used to demodulate the signal to baseband (DC). The two resulting 'time-varying DC' signals represent the sine and cosine of a phase angle corresponding to the changing position of the target, in this case the motion of the chest wall. The current VSM operates at a frequency of 35 GHz with a corresponding wavelength of only 8.6 mm. This provides a response sensitive enough to detect the small motions caused by cardiac function. The Vital Signs Monitor has several possible application areas. The fact that it is noncontacting would make it especially attractive for monitoring patients in burn units, NICUs, or trauma centers, where attaching electrodes is either inconvenient or not feasible. Results to date indicate a strong correlation between the cardiac component of the motion signal and an electrocardiogram (ECG). With careful signal processing and analysis, it may be possible to extract clinically useful information about cardiac condition, function, or performance from the surface-motion waveform. This could provide a safe, inexpensive, and painless addition to the diagnostic and monitoring tools currently available to cardiologists. Although there are technical obstacles to overcome in filtering gross motions of the subject, the VSM offers significant advances over conventional methods of measuring heart and respiration rate. | In the mid-1980s, a 10-GHz prototype Vital Signs Monitor (VSM) was developed using analog technology to assess a fallen soldier's clinical condition at distances up to 100 meters before committing resources to assist that individual. An updated and improved version of the original VSM was developed in 1997. This device was designed to operate at shorter distances, use a higher frequency carrier, and provide more specific heart and respiration rate information using digital signal processing techniques.link_to_subscribed_fulltex

    The role of transplanted Schwann cells in promoting regeneration of rat optic nerve (abstracts)

    Get PDF
    Current concern for ensuring the air-worthiness of the aging commercial air fleet has prompted the establishment of broad-agency programs to develop NDT technologies that address specific aging-aircraft issues.[1, 2] One of the crucial technological needs that has been identified is the development of rapid, quantitative systems for depot-level inspection of bonded aluminum lap joints on aircraft.[1–3] Research results for characterization of disbond and corrosion based on normal-incidence pulse-echo measurement geometries are showing promise, but are limited by the single-site nature of the measurement which requires manual or mechanical scanning to inspect an area. [4–7] One approach to developing efficient systems may be to transfer specific aspects of current medical imaging technology to the NDT arena. Ultrasonic medical imaging systems offer many desirable attributes for large scale inspection. They are portable, provide real-time imaging, and have integrated video tape recorder and printer capabilities available for documentation and post-inspection review. Furthermore, these systems are available at a relatively low cost (approximately 50,000to50,000 to 200,000) and can be optimized for use with metals with straight-forward modifications. As an example, ultrasonic phased-array and linear array imaging technology, which was first developed for use in the medical industry, has been successfully implemented for some NDT applications by other investigators. [8–10

    Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis.

    Get PDF
    In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here "the chaperome," which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones
    corecore