3 research outputs found

    A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates

    Get PDF
    Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a K(i) value of 9.02鈥壩糓 and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3鈥塵g/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3鈥塵g/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development

    The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis

    No full text
    Endothelial cells show surprising cell rearrangement behaviour during angiogenic sprouting; however, the underlying mechanisms and functional importance remain unclear. By combining computational modelling with experimentation, we identify that Notch/VEGFR-regulated differential dynamics of VE-cadherin junctions drive functional endothelial cell rearrangements during sprouting. We propose that continual flux in Notch signalling levels in individual cells results in differential VE-cadherin turnover and junctional-cortex protrusions, which powers differential cell movement. In cultured endothelial cells, Notch signalling quantitatively reduced junctional VE-cadherin mobility. In simulations, only differential adhesion dynamics generated long-range position changes, required for tip cell competition and stalk cell intercalation. Simulation and quantitative image analysis on VE-cadherin junctional patterning in vivo identified that differential VE-cadherin mobility is lost under pathological high VEGF conditions, in retinopathy and tumour vessels. Our results provide a mechanistic concept for how cells rearrange during normal sprouting and how rearrangement switches to generate abnormal vessels in pathologies

    Pathogenic mechanisms following ischemic stroke

    No full text
    corecore