20 research outputs found

    Phase II study of sequential chemotherapy with docetaxel–estramustine followed by mitoxantrone–prednisone in patients with advanced hormone-refractory prostate cancer

    Get PDF
    Sequential chemotherapy may improve treatment efficacy avoiding the additive toxicity associated with concomitant polichemotherapy in hormone-refractory prostate cancer (HRPC). Forty patients received docetaxel 30 mg m−2 intravenous (i.v.), weekly, plus estramustine 280 mg twice daily for 12 weeks. After 2 weeks rest, patients with a decline or stable PSA were treated with mitoxantrone 12 mg m−2 i.v. every 3 weeks plus prednisone 5 mg twice daily for 12 cycles. Forty patients were assessable for toxicity after docetaxel/estramustine. Main toxicities were grade 3–4 AST/ALT or bilirubin increase in seven patients (17.5%) and deep venous thrombosis (DVT) in four patients (10%). Twenty-seven patients received mitoxantrone/prednisone. Main toxicities included DVT in one patient (3.7%) and congestive heart failure in two patients (7%). Thirty-nine patients were assessable for PSA response. Twenty-nine patients (72.5%; 95% CI 63–82%) obtained a ⩾50% PSA decline with 15 patients (37.5%; 95% CI 20–50%) that demonstrated a ⩾90% decrease. Median progression-free and overall survival were respectively 7.0 (95% CI 5.8–8.2 months) and 19.2 months (95% CI 13.9–24.3 months). In conclusion, although this regimen demonstrated a favourable toxicity profile, sequential administration of mitoxantrone is not able to improve docetaxel activity in patients with HRPC

    Weekly administration of docetaxel in combination with estramustine and celecoxib in patients with advanced hormone-refractory prostate cancer: final results from a phase II study

    Get PDF
    The objective of this study was to evaluate the efficacy and safety profile of weekly docetaxel, estramustine and celecoxib in patients with advanced hormone-refractory prostate cancer. Forty-eight patients received 35 mg m−2 of weekly docetaxel for 3 out of every 4 weeks, 280 mg of estramustine twice daily on days 1–3, 8–10, 15–17 and 400 mg of celecoxib twice daily until progression or toxicity. Cycles were repeated every 28 days for at least six cycles. Patients were evaluated for response and toxicity. Patients received a median of four cycles (range: 1–9). On an intention-to-treat analysis, prostate-specific antigen (PSA) was decreased greater than 50% in 28 out of 48 patients (overall response rate: 58%, 95% confidence interval (CI): 44–72) and median duration of PSA response was 8.0 months (95% CI: 6.9–9.0). After a median follow-up of 11.3 months, the median time to progression was 7.1 months and the median overall survival was 19.2 months. The most frequent severe toxicity was asthenia (15% of patients), diarrhoea and stomatitis (8% of patients, each). Grade 3/4 neutropenia was reported in two patients. There was a toxic death during the study due to a gastric perforation. Celecoxib with weekly docetaxel and estramustine is an effective and safe treatment for patients with hormone-refractory prostate cancer, but it does not seem to add any benefit to docetaxel

    Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Get PDF
    Background: Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods: To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results: The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1alpha (HIF-1alpha) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion: In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

    Is there a role for chemotherapy in prostate cancer?

    Get PDF
    There is evidence from randomised-controlled trials that patients with symptomatic hormone-refractory prostate cancer may experience palliative benefit from chemotherapy with mitoxantrone and prednisone. This treatment is well tolerated, even by elderly patients, although the cumulative dose of mitoxantrone is limited by cardiotoxicity. Treatment with docetaxel or paclitaxel, with or without estramustine, appears to convey higher rates of prostate-specific antigen response in phase II trials, but is more toxic. Large phase III trials comparing docetaxel with mitoxantrone have completed accrual. There is no role for chemotherapy in earlier stages of disease except in the context of a well-designed clinical trial
    corecore