13 research outputs found

    Functional Comparison of Innate Immune Signaling Pathways in Primates

    Get PDF
    Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases

    Droplet cooling in atomization sprays

    No full text
    Transport between droplets/particles and a gas phase plays an important role in numerous material processing operations. These include rapid solidification operations such as gas atomization and spray forming, as well as chemical systems such as flash furnaces. Chemical reaction rates and solidification are dependent on the rate of gas-particle or gas-droplet transport mechanisms. These gas-based processes are difficult to analyze due to their complexity which include particle and droplet distribution and the flow in a gas field having variations in temperature and velocity both in the jet cross-section and in the axial distance away from the jet source. Thus to study and properly identify the important variables in transport, these gas and droplet variations must be eliminated or controlled. This is done in this work using models based on a single fluid atomization system. Using a heat transport model (referred to as thermal model) validated using single fluid atomization of molten droplets and a microsegregation model, the effect of process variables on heat losses from droplets was examined. In this work, the effect of type of gas, droplet size, gas temperature, gas-droplet relative velocity on the heat transport from AA6061 droplets was examined. It is shown that for a given gas type, the most critical process variable is the gas temperature particularly as affected by two-way thermal coupling and the droplet size. The results are generalized and applied to explain the difference in droplet cooling rate from different atomization processes. © Springer Science+Business Media, LLC 200
    corecore