369 research outputs found

    Ecology: a prerequisite for malaria elimination and eradication

    Get PDF
    * Existing front-line vector control measures, such as insecticide-treated nets and residual sprays, cannot break the transmission cycle of Plasmodium falciparum in the most intensely endemic parts of Africa and the Pacific * The goal of malaria eradication will require urgent strategic investment into understanding the ecology and evolution of the mosquito vectors that transmit malaria * Priority areas will include understanding aspects of the mosquito life cycle beyond the blood feeding processes which directly mediate malaria transmission * Global commitment to malaria eradication necessitates a corresponding long-term commitment to vector ecolog

    Ribonucleoprotein Particles Containing Non-Coding Y RNAs, Ro60, La and Nucleolin Are Not Required for Y RNA Function in DNA Replication

    Get PDF
    BACKGROUND: Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS: We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE: We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins

    Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser

    Full text link
    Gisbert Winnewisser's astronomical career was practically coextensive with the whole development of molecular radio astronomy. Here I would like to pick out a few of his many contributions, which I, personally, find particularly interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter Astronomy Group. To appear in the Proceedings of the 4th Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies" eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer: Berlin

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Targeting of human interleukin-12B by small hairpin RNAs in xenografted psoriatic skin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psoriasis is a chronic inflammatory skin disorder that shows as erythematous and scaly lesions. The pathogenesis of psoriasis is driven by a dysregulation of the immune system which leads to an altered cytokine production. Proinflammatory cytokines that are up-regulated in psoriasis include tumor necrosis factor alpha (TNFΞ±), interleukin-12 (IL-12), and IL-23 for which monoclonal antibodies have already been approved for clinical use. We have previously documented the therapeutic applicability of targeting TNFΞ± mRNA for RNA interference-mediated down-regulation by anti-TNFΞ± small hairpin RNAs (shRNAs) delivered by lentiviral vectors to xenografted psoriatic skin. The present report aims at targeting mRNA encoding the shared p40 subunit (IL-12B) of IL-12 and IL-23 by cellular transduction with lentiviral vectors encoding anti-IL12B shRNAs.</p> <p>Methods</p> <p>Effective anti-IL12B shRNAs are identified among a panel of shRNAs by potency measurements in cultured cells. The efficiency and persistency of lentiviral gene delivery to xenografted human skin are investigated by bioluminescence analysis of skin treated with lentiviral vectors encoding the luciferase gene. shRNA-expressing lentiviral vectors are intradermally injected in xenografted psoriatic skin and the effects of the treatment evaluated by clinical psoriasis scoring, by measurements of epidermal thickness, and IL-12B mRNA levels.</p> <p>Results</p> <p>Potent and persistent transgene expression following a single intradermal injection of lentiviral vectors in xenografted human skin is reported. Stable IL-12B mRNA knockdown and reduced epidermal thickness are achieved three weeks after treatment of xenografted psoriatic skin with lentivirus-encoded anti-IL12B shRNAs. These findings mimick the results obtained with anti-TNFΞ± shRNAs but, in contrast to anti-TNFΞ± treatment, anti-IL12B shRNAs do not ameliorate the psoriatic phenotype as evaluated by semi-quantitative clinical scoring and by immunohistological examination.</p> <p>Conclusions</p> <p>Our studies consolidate the properties of lentiviral vectors as a tool for potent gene delivery and for evaluation of mRNA targets for anti-inflammatory therapy. However, in contrast to local anti-TNFΞ± treatment, the therapeutic potential of targeting IL-12B at the RNA level in psoriasis is questioned.</p

    Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats.

    Get PDF
    Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair

    Mammary stem cells have myoepithelial cell properties.

    Get PDF
    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express Ξ±-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.This work was funded by Cancer Research UK, Breast Cancer Campaign, the University of Cambridge, Hutchison Whampoa Limited, La Ligue Nationale Contre le Cancer (Equipe LabelisΓ©e 2013) and a grant from Agence Nationale de la Recherche ANR- 08-BLAN-0078-01 to M.A.G.This is the author accepted manuscript. The final version is available from Nature at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3025.html

    The role of dendritic cells in the immunopathogenesis of psoriasis

    Get PDF
    Psoriasis vulgaris is a chronic inflammatory skin disease that is marked by a complex interplay of dendritic cells (DCs), T-cells, cytokines, and downstream transcription factors as part of a self-sustaining type 1 cytokine network. As integral players of the immune system, DCs represent antigen-presenting cells that are crucial for efficient activation of T-cells and B-cells. DCs have also been linked to distinct chronic inflammatory conditions, including psoriasis. In the setting of psoriasis therapy, DC/T cell interactions serve as a potential target for biologic response modifiers. Here we describe the major DC subsets as well as the immunologic involvement of DCs within the context of psoriatic lesions

    Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control

    Get PDF
    Trf4 is the poly(A) polymerase component of TRAMP4, which stimulates nuclear RNA degradation by the exosome. We report that in Saccharomyces cerevisiae strains lacking Trf4, cryptic transcripts are detected from regions of repressed chromatin at telomeres and the rDNA intergenic spacer region (IGS1-R), and at CEN3. Degradation of the IGS1-R transcript was reduced in strains lacking TRAMP components, the core exosome protein Mtr3 or the nuclear-specific exosome component Rrp6. IGS1-R has potential binding sites for the RNA-binding proteins Nrd1/Nab3, and was stabilized by mutation of Nrd1. IGS1-R passes through the replication fork barrier, a region required for rDNA copy number control. Strains lacking Trf4 showed sporadic changes in rDNA copy number, whereas loss of both Trf4 and either the histone deacetylase Sir2 or the topoisomerase Top1 caused dramatic loss of rDNA repeats. Chromatin immunoprecipitation analyses showed that Trf4 is co-transcriptionally recruited to IGS1-R, consistent with a direct role in rDNA stability. Co-transcriptional RNA binding by Trf4 may link RNA and DNA metabolism and direct immediate IGS1-R degradation by the exosome following transcription termination

    Vesicular Stomatitis Virus Enters Cells through Vesicles Incompletely Coated with Clathrin That Depend upon Actin for Internalization

    Get PDF
    Many viruses that enter cells by clathrin-dependent endocytosis are significantly larger than the dimensions of a typical clathrin-coated vesicle. The mechanisms by which viruses co-opt the clathrin machinery for efficient internalization remain uncertain. Here we examined how clathrin-coated vesicles accommodate vesicular stomatitis virus (VSV) during its entry into cells. Using high-resolution imaging of the internalization of single viral particles into cells expressing fluorescent clathrin and adaptor molecules, we show that VSV enters cells through partially clathrin-coated vesicles. We found that on average, virus-containing vesicles contain more clathrin and clathrin adaptor molecules than conventional vesicles, but this increase is insufficient to permit full coating of the vesicle. We further show that virus-containing vesicles depend upon the actin machinery for their internalization. Specifically, we found that components of the actin machinery are recruited to virus-containing vesicles, and chemical inhibition of actin polymerization trapped viral particles in vesicles at the plasma membrane. By analysis of multiple independent virus internalization events, we show that VSV induces the nucleation of clathrin for its uptake, rather than depending upon random capture by formation of a clathrin-coated pit. This work provides new mechanistic insights into the process of virus internalization as well as uptake of unconventional cargo by the clathrin-dependent endocytic machinery
    • …
    corecore