12 research outputs found

    Acute bacterial prostatitis: heterogeneity in diagnostic criteria and management. Retrospective multicentric analysis of 371 patients diagnosed with acute prostatitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is currently a lack of consensus for the diagnosis, investigations and treatments of acute bacterial prostatitis (AP).</p> <p>Methods</p> <p>The symptoms, investigations and treatments of 371 inpatients diagnosed with AP were analyzed through a retrospective study conducted in four departments – Urology (U), Infectious Diseases (ID), Internal Medicine (IM), Geriatrics (G) – of two French university hospitals.</p> <p>Results</p> <p>The cause of admission, symptoms, investigations and treatments depended markedly on the department of admission but not on the hospital. In U, patients commonly presented with a bladder outlet obstruction, they had a large imaging and functional check-up, and received alpha-blockers and anti-inflammatory drugs. In ID, patients were febrile and received longer and more appropriate antibiotic treatments. In G, patients presented with cognitive disorders and commonly had post-void urine volume measurements. In IM, patients presented with a wide range of symptoms, and had very diverse investigations and antibiotic regimen.</p> <p>Overall, a 3:1 ratio of community-acquired AP (CA-AP) to nosocomial AP (N-AP) was observed. Urine culture isolated mainly <it>E. coli </it>(58% of AP, 68% of CA-AP), with venereal agents constituting less than 1%. The probabilistic antibiotic treatments were similar for N-AP and CA-AP (58% bi-therapy; 63% fluoroquinolone-based regimen). For N-AP, these treatments were more likely to be inadequate (42% <it>vs. </it>8%, p < 0.001) and had a higher rate of bacteriological failure (48% <it>vs. </it>19%, p < 0.001).</p> <p>Clinical failure at follow-up was more common than bacteriological failure (75% versus 24%, p < 0.001). Patients older than 49 had more underlying urinary tract disorders and a higher rate of clinical failure (30% versus 10%, p < 0.0001).</p> <p>Conclusion</p> <p>This study highlights the difficulties encountered on a daily basis by the physicians regarding the diagnosis and management of acute prostatitis.</p

    Where Are All the Mycobacterium avium Subspecies paratuberculosis in Patients with Crohn's Disease?

    Get PDF
    Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic granulomatous inflammation of the intestines, Johne's disease, in dairy cows and every other species of mammal in which it has been identified. MAP has been identified in the mucosal layer and deeper bowel wall in patients with Crohn's disease by methods other than light microscopy, and by direct visualization in small numbers by light microscopy. MAP has not been accepted as the cause of Crohn's disease in part because it has not been seen under the microscope in large numbers in the intestines of patients with Crohn's disease. An analysis of the literature on the pathology of Crohn's disease and on possible MAP infection in Crohn's patients suggests that MAP might directly infect endothelial cells and adipocytes and cause them to proliferate, causing focal obstruction within already existing vessels (including granuloma formation), the development of new vessels (neoangiogenesis and lymphangiogenesis), and the “creeping fat” of the mesentery that is unique in human pathology to Crohn's disease but also occurs in bovine Johne's disease. Large numbers of MAP might therefore be found in the mesentery attached to segments of intestine affected by Crohn's disease rather than in the bowel wall, the blood and lymphatic vessels running through the mesentery, or the mesenteric fat itself. The walls of fistulas might result from the neoangiogenesis or lymphangiogenesis that occurs in the bowel wall in Crohn's disease and therefore are also possible sites of large numbers of MAP. The direct visualization of large numbers of MAP organisms in the tissues of patients with Crohn's disease will help establish that MAP causes Crohn's disease

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal
    corecore