3,698 research outputs found
Statistical Mechanics of DNA Rupture: Theory and Simulations
We study the effects of the shear force on the rupture mechanism on a double
stranded DNA. Motivated by recent experiments, we perform the atomistic
simulations with explicit solvent to obtain the distributions of extension in
hydrogen and covalent bonds below the rupture force. We obtain a significant
difference between the atomistic simulations and the existing results in the
iterature based on the coarse-grained models (theory and simulations). We
discuss the possible reasons and improve the coarse-grained model by
incorporating the consequences of semi-microscopic details of the nucleotides
in its description. The distributions obtained by the modified model
(simulations and theoretical) are qualitatively similar to the one obtained
using atomistic simulations.Comment: 18 pages, 9 figures. Accepted in J. Chem. Phys. (2013). arXiv admin
note: text overlap with arXiv:1104.305
Effects of Molecular Crowding on stretching of polymers in poor solvent
We consider a linear polymer chain in a disordered environment modeled by
percolation clusters on a square lattice. The disordered environment is meant
to roughly represent molecular crowding as seen in cells. The model may be
viewed as the simplest representation of biopolymers in a cell. We show the
existence of intermediate states during stretching arising as a consequence of
molecular crowding. In the constant distance ensemble the force-extension
curves exhibit oscillations. We observe the emergence of two or more peaks in
the probability distribution curves signaling the coexistence of different
states and indicating that the transition is discontinuous unlike what is
observed in the absence of molecular crowding.Comment: 14 pages, 6 figure
Agile SoC Development with Open ESP
ESP is an open-source research platform for heterogeneous SoC design. The
platform combines a modular tile-based architecture with a variety of
application-oriented flows for the design and optimization of accelerators. The
ESP architecture is highly scalable and strikes a balance between regularity
and specialization. The companion methodology raises the level of abstraction
to system-level design and enables an automated flow from software and hardware
development to full-system prototyping on FPGA. For application developers, ESP
offers domain-specific automated solutions to synthesize new accelerators for
their software and to map complex workloads onto the SoC architecture. For
hardware engineers, ESP offers automated solutions to integrate their
accelerator designs into the complete SoC. Conceived as a heterogeneous
integration platform and tested through years of teaching at Columbia
University, ESP supports the open-source hardware community by providing a
flexible platform for agile SoC development.Comment: Invited Paper at the 2020 International Conference On Computer Aided
Design (ICCAD) - Special Session on Opensource Tools and Platforms for Agile
Development of Specialized Architecture
Effect of FCNC mediated Z boson on lepton flavor violating decays
We study the three body lepton flavor violating (LFV) decays , and the semileptonic decay in the flavor changing neutral current (FCNC) mediated boson
model. We also calculate the branching ratios for LFV leptonic B decays,
, , and the
conversion of muon to electron in Ti nucleus. The new physics parameter space
is constrained by using the experimental limits on and
. We find that the branching ratios for and processes could be as large as and . For other LFV B decays the branching ratios are found to be too
small to be observed in the near future.Comment: 15 pages, 8 figures, typos corrected, one more section added, version
to appear in EPJ
The Adsorption and Collapse Transitions in a Linear Polymer Chain near an Attractive Wall
We deduce the qualitative phase diagram of a long flexible neutral polymer
chain immersed in a poor solvent near an attracting surface using
phenomenological arguments. The actual positions of the phase boundaries are
estimated numerically from series expansion up to 19 sites of a self-attracting
self avoiding walk in three dimensions. In two dimensions, we calculate
analytically phase boundaries in some cases for a partially directed model.
Both the numerical as well as analytical results corroborate the proposed
qualitative phase diagram.Comment: 8 pages, 8 figures, revte
Heavy Fermion Behavior, Crystalline Electric Field Effects, and Weak Ferromagnetism in SmOs_{4}Sb_{12}
The filled skutterudite compound SmOs_{4}Sb_{12} was prepared in single
crystal form and characterized. The SmOs_{4}Sb_{12} crystals have the
LaFe_{4}P_{12}-type structure with lattice parameter a = 9.3085 Angstroms.
Specific heat measurements indicate a large electronic specific heat
coefficient of ~880 mJ/mol K^{2}, from which an enhanced effective mass m^{*} ~
170 m_{e} is estimated. The specific heat data also suggest crystalline
electric field (CEF) splitting of the Sm^{3+} J = 5/2 multiplet into a
Gamma_{7} doublet ground state and a Gamma_{8} quartet excited state separated
by 37 K. Electrical resistivity rho(T) measurements reveal a decrease in rho(T)
below ~50 K that is consistent with CEF splitting of ~33 K between a Gamma_(7)
doublet ground state and Gamma_{8} quartet excited state. Specific heat and
magnetic susceptibility measurements display a possible weak ferromagnetic
transition at ~2.6 K, which could be an intrinsic property of SmOs_4Sb_{12} or
possibly due to an unknown impurity phase.Comment: 24 pages, 11 Postscript figures, to be published in Physical Review
Multifractal Behaviour of n-Simplex Lattice
We study the asymptotic behaviour of resistance scaling and fluctuation of
resistance that give rise to flicker noise in an {\em n}-simplex lattice. We
propose a simple method to calculate the resistance scaling and give a
closed-form formula to calculate the exponent, , associated with
resistance scaling, for any n. Using current cumulant method we calculate the
exact noise exponent for n-simplex lattices.Comment: Latex, 9 pages including one figur
CP Violation in \tau ->\nu\pi K_S and D->\pi K_S: The Importance of K_S-K_L Interference
The -factories have measured CP asymmetries in the and
modes. The state is identified by its decay to two pions at
a time that is close to the lifetime. Within the Standard Model and many
of its extensions, the asymmetries in these modes come from CP violation in
mixing. We emphasize that the interference between the
amplitudes of intermediate and is as important as the pure
amplitude. Consequently, the measured asymmetries depend on the times over
which the relevant decay rates are integrated and on features of the
experiment.Comment: 4 pages, 4 figure
Sandpile Model with Activity Inhibition
A new sandpile model is studied in which bonds of the system are inhibited
for activity after a certain number of transmission of grains. This condition
impels an unstable sand column to distribute grains only to those neighbours
which have toppled less than m times. In this non-Abelian model grains
effectively move faster than the ordinary diffusion (super-diffusion). A novel
system size dependent cross-over from Abelian sandpile behaviour to a new
critical behaviour is observed for all values of the parameter m.Comment: 11 pages, RevTex, 5 Postscript figure
- …