9,225 research outputs found
Pediatric non alcoholic fatty liver disease: old and new concepts on development, progression, metabolic insight and potential treatment targets
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease in children. NAFLD has emerged to be extremely prevalent, and predicted by obesity and male gender. It is defined by hepatic fat infiltration >5% hepatocytes, in the absence of other causes of liver pathology. It includes a spectrum of disease ranging from intrahepatic fat accumulation (steatosis) to various degrees of necrotic inflammation and fibrosis (non-alcoholic steatohepatatis [NASH]). NAFLD is associated, in children as in adults, with severe metabolic impairments, determining an increased risk of developing the metabolic syndrome. It can evolve to cirrhosis and hepatocellular carcinoma, with the consequent need for liver transplantation. Both genetic and environmental factors seem to be involved in the development and progression of the disease, but its physiopathology is not yet entirely clear. In view of this mounting epidemic phenomenon involving the youth, the study of NAFLD should be a priority for all health care systems. This review provides an overview of current and new clinical-histological concepts of pediatric NAFLD, going through possible implications into patho-physiolocical and therapeutic perspectives
2-vertex Lorentzian Spin Foam Amplitudes for Dipole Transitions
We compute transition amplitudes between two spin networks with dipole
graphs, using the Lorentzian EPRL model with up to two (non-simplicial)
vertices. We find power-law decreasing amplitudes in the large spin limit,
decreasing faster as the complexity of the foam increases. There are no
oscillations nor asymptotic Regge actions at the order considered, nonetheless
the amplitudes still induce non-trivial correlations. Spin correlations between
the two dipoles appear only when one internal face is present in the foam. We
compute them within a mini-superspace description, finding positive
correlations, decreasing in value with the Immirzi parameter. The paper also
provides an explicit guide to computing Lorentzian amplitudes using the
factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2)
ones. We discuss some of the difficulties of non-simplicial foams, and provide
a specific criterion to partially limit the proliferation of diagrams. We
systematically compare the results with the simplified EPRLs model, much faster
to evaluate, to learn evidence on when it provides reliable approximations of
the full amplitudes. Finally, we comment on implications of our results for the
physics of non-simplicial spin foams and their resummation.Comment: 27 pages + appendix, many figures. v2: one more numerical result,
plus minor amendment
Analysis of ring laser gyroscopes including laser dynamics
Inertial sensors stimulate very large interest, not only for their
application but also for fundamental physics tests. Ring laser gyros, which
measure angular rotation rate, are certainly among the most sensitive inertial
sensors, with excellent dynamic range and bandwidth. Large area ring laser
gyros are routinely able to measure fractions of prad/s, with high duty cycle
and bandwidth, providing fast, direct and local measurement of relevant
geodetic and geophysical signals. Improvements of a factor would open
the windows for general relativity tests, as the GINGER project, an Earth based
experiment aiming at the Lense-Thirring test at level. However, it is
well known that the dynamics of the laser induces non-linearities, and those
effects are more evident in small scale instruments. Sensitivity and accuracy
improvements are always worthwhile, and in general there is demand for high
sensitivity environmental study and development of inertial platforms, where
small scale transportable instruments should be used. We discuss a novel
technique to analyse the data, aiming at studying and removing those
non-linearity. The analysis is applied to the two ring laser prototypes GP2 and
GINGERINO, and angular rotation rate evaluated with the new and standard
methods are compared. The improvement is evident, it shows that the
back-scatter problem of the ring laser gyros is negligible with a proper
analysis of the data, improving the performances of large scale ring laser
gyros, but also indicating that small scale instruments with sensitivity of
nrad/s are feasible.Comment: 9 pages and 7 figure
Experimental Test of an Event-Based Corpuscular Model Modification as an Alternative to Quantum Mechanics
We present the first experimental test that distinguishes between an
event-based corpuscular model (EBCM) [H. De Raedt et al.: J. Comput. Theor.
Nanosci. 8 (2011) 1052] of the interaction of photons with matter and quantum
mechanics. The test looks at the interference that results as a single photon
passes through a Mach-Zehnder interferometer [H. De Raedt et al.: J. Phys. Soc.
Jpn. 74 (2005) 16]. The experimental results, obtained with a low-noise
single-photon source [G. Brida et al.: Opt. Expr. 19 (2011) 1484], agree with
the predictions of standard quantum mechanics with a reduced of 0.98
and falsify the EBCM with a reduced of greater than 20
Modulation of human corticospinal excitability by paired associative stimulation in patients with amyotrophic lateral sclerosis and effects of Riluzole
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes an impairment in both the upper and lower motor neurons. The recent description of numerous non-motor signs points to an involvement of the neocortex networks that is more complex than was previously believed. Paired associative stimulation (PAS), a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation, can enhance motor output in the contralateral hand through an NMDA-mediated sensorimotor mechanism.
OBJECTIVE To describe the effects of PAS on ALS patients before and after Riluzole intake compared with healthy subjects.
METHODS PAS was used to detect differences between 24 newly-diagnosed ALS patients and 25 age-matched healthy controls. MEP amplitude from the abductor pollicis brevis was considered before PAS, immediately after (T0) and after 10 (T10), 20 (T20), 30 (T30) and 60 (T60) minutes. Statistical significance was calculated using RM-ANOVA.
RESULTS In healthy controls, PAS significantly increased MEP amplitude at T10, T20 and T30 (p < 0.05). In ALS patients, a significant increase in MEP amplitude was also observed after 60 min (p < 0.05), thus demonstrating NMDA-mediated enhanced facilitatory plasticity. After two weeks of riluzole intake, no MEP amplitude increase was evident after PAS at any time point. In three monomelic-onset ALS patients, sensorimotor facilitation was evident only in the hemisphere corresponding to the affected side and appeared in the opposite hemisphere when the patients manifested contralateral symptoms.
CONCLUSIONS PAS may be considered a useful tool when investigating NMDA-mediated neocortical networks in ALS patients and the modulation of such networks after anti-glutamatergic drug intake
R-parity as a residual gauge symmetry : probing a theory of cosmological dark matter
We present a non-supersymmetric scenario in which the R-parity symmetry arises as a result of spontaneous gauge symmetry breaking,
leading to a viable Dirac fermion WIMP dark matter candidate. Direct detection
in nuclear recoil experiments probes dark matter masses around TeV for
TeV consistent with searches at the LHC, while lepton
flavor violation rates and flavor changing neutral currents in neutral meson
systems lie within reach of upcoming experiments.Comment: 7 pages, 3 figure
Principal Semantic Components of Language and the Measurement of Meaning
Metric systems for semantics, or semantic cognitive maps, are allocations of words or other representations in a metric space based on their meaning. Existing methods for semantic mapping, such as Latent Semantic Analysis and Latent Dirichlet Allocation, are based on paradigms involving dissimilarity metrics. They typically do not take into account relations of antonymy and yield a large number of domain-specific semantic dimensions. Here, using a novel self-organization approach, we construct a low-dimensional, context-independent semantic map of natural language that represents simultaneously synonymy and antonymy. Emergent semantics of the map principal components are clearly identifiable: the first three correspond to the meanings of “good/bad” (valence), “calm/excited” (arousal), and “open/closed” (freedom), respectively. The semantic map is sufficiently robust to allow the automated extraction of synonyms and antonyms not originally in the dictionaries used to construct the map and to predict connotation from their coordinates. The map geometric characteristics include a limited number (∼4) of statistically significant dimensions, a bimodal distribution of the first component, increasing kurtosis of subsequent (unimodal) components, and a U-shaped maximum-spread planar projection. Both the semantic content and the main geometric features of the map are consistent between dictionaries (Microsoft Word and Princeton's WordNet), among Western languages (English, French, German, and Spanish), and with previously established psychometric measures. By defining the semantics of its dimensions, the constructed map provides a foundational metric system for the quantitative analysis of word meaning. Language can be viewed as a cumulative product of human experiences. Therefore, the extracted principal semantic dimensions may be useful to characterize the general semantic dimensions of the content of mental states. This is a fundamental step toward a universal metric system for semantics of human experiences, which is necessary for developing a rigorous science of the mind
- …