10,634 research outputs found

    An Independent Calibration of Stellar Ages: HST Observations of White Dwarfs at V=25

    Get PDF
    The white dwarf luminosity function of a stellar cluster will have a sharp truncation at a luminosity which is determined by the time since formation of the first white dwarfs in that cluster. Calculation of the dependence of this limiting luminosity on age requires relatively well-understood physics and is independent of stellar evolutionary models. Thus, measurement of the termination of the white dwarf luminosity function provides an independent method to determine the age of a cluster, and thereby to calibrate stellar evolutionary ages. We have obtained HST WFPC2 data in two open clusters, identified the white dwarf sequence, and proved the feasibility of this approach, by detecting white dwarfs to V=25. Much deeper data are feasible. From our present limited data, we show that degenerate cooling ages are not consistent with some published isochrone ages for clusters with ages of order 1Gyr.Comment: 5 pages plus 3 figures ps format, paper in press in MNRAS: previous attempt lost the tex

    Developing an embedded nursing service within a homeless shelter: Client's perspectives

    Get PDF
    This phenomenological case study of a newly developed nursing service, embedded within a homeless shelter in the South East of England, uses semi-structured to elicit experiences and perceptions of clients within the service. Participants ( = 6) were interviewed using a semi-structured approach and identified three broad themes: impact of previous healthcare experiences, benefits of embedding healthcare within the shelter, and future service development. The study illuminates the diversity and complexity of healthcare needs of homeless people, as well as offers a unique insight into the service user's perception of the service

    Method and apparatus for the synthesis of dihydroartemisinin and artemisinin derivatives

    Get PDF
    The present invention is directed to a method for continuous production of dihydroartemisinin and also artemisinin derivatives derived from dihydroartemisinin by using artemisinin or dihydroartemisinic acid (DHAA) as starting material as well as to a continuous flow reactor for producing dihydroartemisinin as well as the artemisinin derivatives. It was found that the reduction of artemisinin to dihydroartemisinin in a continuous process requires a special kind of reactor and a special combination of reagents comprising a hydride reducing agent, at least one activator such as an inorganic activator, at least one solid base, at least one aprotic solvent and at least one C1-C5 alcohol

    Modeling the elastic deformation of polymer crusts formed by sessile droplet evaporation

    Full text link
    Evaporating droplets of polymer or colloid solution may produce a glassy crust at the liquid-vapour interface, which subsequently deforms as an elastic shell. For sessile droplets, the known radial outward flow of solvent is expected to generate crusts that are thicker near the pinned contact line than the apex. Here we investigate, by non-linear quasi-static simulation and scaling analysis, the deformation mode and stability properties of elastic caps with a non-uniform thickness profile. By suitably scaling the mean thickness and the contact angle between crust and substrate, we find data collapse onto a master curve for both buckling pressure and deformation mode, thus allowing us to predict when the deformed shape is a dimple, mexican hat, and so on. This master curve is parameterised by a dimensionless measure of the non-uniformity of the shell. We also speculate on how overlapping timescales for gelation and deformation may alter our findings.Comment: 8 pages, 7 figs. Some extra clarification of a few points, and minor corrections. To appear in Phys. Rev.

    The Absence of Extra-Tidal Structure in the Sculptor Dwarf Spheroidal Galaxy

    Full text link
    The results of a wide-field survey of the Sculptor dwarf spheroidal galaxy are presented. Our aims were to obtain an accurate map of the outer structure of Sculptor, and to determine the level of interaction between this system and the Galaxy. Photometry was obtained in two colours down to the magnitude limits of V=20 and I=19, covering a 3.1 times 3.1 square deg area centred on Sculptor. The resulting colour-magnitude data were used as a mask to select candidate horizontal branch and red giant branch stars for this system. Previous work has shown that the red horizontal branch (HB) stars are more concentrated than the blue HB stars. We have determined the radial distributions of these two populations and show that the overall Sculptor density profile is well described by a two component model based on a combination of these radial distributions. Additionally, spectra of the Ca ii triplet region were obtained for over 700 candidate red giant stars over the 10 square deg region using the 2dF instrument on the Anglo-Australian Telescope. These spectra were used to remove foreground Galactic stars based on radial velocity and Ca ii triplet strength. The final list of Sculptor members contained 148 stars, seven of which are located beyond the nominal tidal radius. Both the photometric and spectroscopic datasets indicate no significant extra-tidal structure. These results support at most a mild level of interaction between this system and the Galaxy, and we have measured an upper mass limit for extra-tidal material to be 2.3 +/- 0.6% of the Sculptor luminous mass. This lack of tidal interaction indicates that previous velocity dispersion measurements (and hence the amount of dark matter detected) in this system are not strongly influenced by the Galactic tidal field.Comment: 53 pages, 23 figures. Accepted for publication in the Astronomical Journal. Some figures are reduced in size, and a full version is available at: ftp://ftp.mso.anu.edu.au/pub/coleman/sculptor.pd

    Volume-controlled buckling of thin elastic shells: Application to crusts formed on evaporating partially-wetted droplets

    Full text link
    Motivated by the buckling of glassy crusts formed on evaporating droplets of polymer and colloid solutions, we numerically model the deformation and buckling of spherical elastic caps controlled by varying the volume between the shell and the substrate. This volume constraint mimics the incompressibility of the unevaporated solvent. Discontinuous buckling is found to occur for sufficiently thin and/or large contact angle shells, and robustly takes the form of a single circular region near the boundary that `snaps' to an inverted shape, in contrast to externally pressurised shells. Scaling theory for shallow shells is shown to well approximate the critical buckling volume, the subsequent enlargement of the inverted region and the contact line force.Comment: 7 pages in J. Phys. Cond. Mat. spec; 4 figs (2 low-quality to reach LANL's over-restrictive size limits; ask for high-detailed versions if required

    Topological phase for entangled two-qubit states and the representation of the SO(3)group

    Full text link
    We discuss the representation of the SO(3)SO(3) group by two-qubit maximally entangled states (MES). We analyze the correspondence between SO(3)SO(3) and the set of two-qubit MES which are experimentally realizable. As a result, we offer a new interpretation of some recently proposed experiments based on MES. Employing the tools of quantum optics we treat in terms of two-qubit MES some classical experiments in neutron interferometry, which showed the π\pi -phase accrued by a spin-1/21/2 particle precessing in a magnetic field. By so doing, we can analyze the extent to which the recently proposed experiments - and future ones of the same sort - would involve essentially new physical aspects as compared with those performed in the past. We argue that the proposed experiments do extend the possibilities for displaying the double connectedness of SO(3)SO(3), although for that to be the case it results necessary to map elements of SU(2)SU(2) onto physical operations acting on two-level systems.Comment: 25 pages, 9 figure

    Evaluating an unconfined aquifer by analysis of age-dating tracers in stream water

    Get PDF
    The mean transit time (MTT) is a fundamental property of a groundwater flow system that is strongly related to the ratio of recharge rate to storage volume. However, obtaining samples for estimating the MTT using environmental tracers is problematic as flow-weighted samples over the full spectrum of transit times are needed. Samples collected fromthe base flow of a gaining stream in the North Carolina Coastal Plain (West Bear Creek) that were corrected for exchange with the atmosphere yielded environmental tracer concentrations (SF6 and CFC-11) very similar to flow-weighted values from nine or ten streambed piezometers that directly sampled groundwater during low streamflow. At higher streamflow on the falling limb of the hydrograph, stream tracer concentrations (after correction for gas exchange) were significantly higher than the flow-weighted mean from piezometers, consistent with dominance of the streamtracer signal by transient influx of surface water and/or younger subsurface water. The apparent MTT derived from SF6 in low flow stream water samples was 26 years, suggesting a groundwater recharge rate of about 210 mm/yr, that is consistent with vertical profiles obtained by sampling nested piezometers in the aquifer. When sampled under low flow conditions when streamflow consists of a high component of groundwater discharge, West Bear Creek appears to act as a flow-weighted integrator of transit times and, streamflow samples can provide fundamental information regarding groundwater recharge rate and MTT. Our study suggests that watershed-scale evaluation of some groundwater flow systems is possible without utilizing monitoring wells

    Efficient simulation of quantum evolution using dynamical coarse-graining

    Full text link
    A novel scheme to simulate the evolution of a restricted set of observables of a quantum system is proposed. The set comprises the spectrum-generating algebra of the Hamiltonian. The idea is to consider a certain open-system evolution, which can be interpreted as a process of weak measurement of the distinguished observables performed on the evolving system of interest. Given that the observables are "classical" and the Hamiltonian is moderately nonlinear, the open system dynamics displays a large time-scales separation between the dephasing of the observables and the decoherence of the evolving state in the basis of the generalized coherent states (GCS), associated with the spectrum-generating algebra. The time scale separation allows the unitary dynamics of the observables to be efficiently simulated by the open-system dynamics on the intermediate time-scale.The simulation employs unraveling of the corresponding master equations into pure state evolutions, governed by the stochastic nonlinear Schroedinger equantion (sNLSE). It is proved that GCS are globally stable solutions of the sNLSE, if the Hamilonian is linear in the algebra elements.Comment: The version submitted to Phys. Rev. A, 28 pages, 3 figures, comments are very welcom
    • …
    corecore