1,242 research outputs found

    Characterization of the hot Neptune GJ 436b with Spitzer and ground-based observations

    Full text link
    We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary eclipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.Comment: Accepted for publication in A&A on 11/09/2007; 7 pages, 6 figure

    The Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b

    Get PDF
    We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).Comment: Submitted to A&

    WASP-50b: a hot Jupiter transiting a moderately active solar-type star

    Get PDF
    We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).Comment: 9 pages, 8 figures. Accepted for publication in Astronomy & Astrophysic

    WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect

    Full text link
    We report the discovery of a new transiting planet in the Southern Hemisphere. It has been found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope and the ESO 3.6m telescope. The orbital period of the planet is 2.94 days. We find it is a gas giant with a mass of 0.88 \pm 0.10 Mj and a radius estimated at 0.96 \pm 0.05 Rj . We have also obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal to noise of the effect and of a small impact parameter we cannot place a constraint on the projected spin-orbit angle. We find two confiicting values for the stellar rotation. Our determination, via spectral line broadening gives v sin I = 2.2 \pm 0.3 km/s, while another method, based on the activity level using the index log R'HK, gives an equatorial rotation velocity of only v = 1.35 \pm 0.20 km/s. Using these as priors in our analysis, the planet could either be misaligned or aligned. This should send strong warnings regarding the use of such priors. There is no evidence for eccentricity nor of any radial velocity drift with time.Comment: 13 pages, 8 figures, 7 tables, accepted for publication in A&

    High accuracy transit photometry of the planet OGLE-TR-113b with a new deconvolution-based method

    Get PDF
    A high accuracy photometry algorithm is needed to take full advantage of the potential of the transit method for the characterization of exoplanets, especially in deep crowded fields. It has to reduce to the lowest possible level the negative influence of systematic effects on the photometric accuracy. It should also be able to cope with a high level of crowding and with large scale variations of the spatial resolution from one image to another. A recent deconvolution-based photometry algorithm fulfills all these requirements, and it also increases the resolution of astronomical images, which is an important advantage for the detection of blends and the discrimination of false positives in transit photometry. We made some changes to this algorithm in order to optimize it for transit photometry and used it to reduce NTT/SUSI2 observations of two transits of OGLE-TR-113b. This reduction has led to two very high precision transit light curves with a low level of systematic residuals, used together with former photometric and spectroscopic measurements to derive new stellar and planetary parameters in excellent agreement with previous ones, but significantly more precise.Comment: 8 pages, 4 figure

    The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns

    Get PDF
    We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0.042 % and 0.41 +- 0.11 % at 4.5 and 8 microns, respectively. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution to the night side of the planet and are in better agreement with an atmosphere free of temperature inversion layer. Still, the presence of such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer and ground-based data confirms the large mass and size of the planet with slightly revised values (Mp = 3.47 +- 0.22 Mjup, Rp = 1.466 +- 0.044 Rjup). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos(omega) = -0.00291 +- 0.00063 where e is the orbital eccentricity and omega is the argument of periastron. Constraining the age of the system to be at most of a few hundreds of Myr and assuming that the non-zero orbital eccentricity is not due to a third undetected body, we model the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes and initial orbital parameters. For log(Q_s') = 5 - 6, our modelling is able to explain the large radius of CoRoT-2b if log(Q_p') <= 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most.Comment: 13 pages, 2 tables, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of a transit of the super-Earth 55 Cnc e with Warm Spitzer

    Get PDF
    We report on the detection of a transit of the super-Earth 55 Cnc e with warm Spitzer in IRAC's 4.5-micron band. Our MCMC analysis includes an extensive modeling of the systematic effects affecting warm Spitzer photometry, and yields a transit depth of 410 +- 63 ppm, which translates to a planetary radius of 2.08 +- 0.16 R_Earth as measured in IRAC 4.5-micron channel. A planetary mass of 7.81 +- 0.58 M_Earth is derived from an extensive set of radial-velocity data, yielding a mean planetary density of 4.8 +- 1.3 g cm-3. Thanks to the brightness of its host star (V = 6, K = 4), 55 Cnc e is a unique target for the thorough characterization of a super-Earth orbiting around a solar-type star.Comment: Accepted for publication in A&A on 31 July 2011. 9 pages, 7 figures and 3 tables. Minor changes. The revised version includes a baseline models comparison and a new figure presenting the spatially- and time-dependent terms of the model function used in Eq.

    A deconvolution-based algorithm for crowded field photometry with unknown Point Spread Function

    Get PDF
    A new method is presented for determining the Point Spread Function (PSF) of images that lack bright and isolated stars. It is based on the same principles as the MCS (Magain, Courbin, Sohy, 1998) image deconvolution algorithm. It uses the information contained in all stellar images to achieve the double task of reconstructing the PSFs for single or multiple exposures of the same field and to extract the photometry of all point sources in the field of view. The use of the full information available allows to construct an accurate PSF. The possibility to simultaneously consider several exposures makes it very well suited to the measurement of the light curves of blended point sources from data that would be very difficult or even impossible to analyse with traditional PSF fitting techniques. The potential of the method for the analysis of ground-based and space-based data is tested on artificial images and illustrated by several examples, including HST/NICMOS images of a lensed quasar and VLT/ISAAC images of a faint blended Mira star in the halo of the giant elliptical galaxy NGC5128 (Cen A).Comment: Institutes: (1) Institut d'Astrophysique et de Geophysique, Universite de Liege, allee du 6 Aout 17, B-4000 Liege, Belgium; (2) Ecole Polytechnique Federale de Lausanne (EPFL), Laboratoire d'Astrophysique, Observatoire, CH-1290 Sauverny, Switzerland; (3) Observatoire de Geneve, 51 Chemin des Maillettes, CH-1290 Sauverny, Switzerland. 8 pages, 8 figures. Accepted for publication in A&

    Transits against Fainter Stars: The Power of Image Deconvolution

    Full text link
    Compared to bright star searches, surveys for transiting planets against fainter (V=12-18) stars have the advantage of much higher sky densities of dwarf star primaries, which afford easier detection of small transiting bodies. Furthermore, deep searches are capable of probing a wider range of stellar environments. On the other hand, for a given spatial resolution and transit depth, deep searches are more prone to confusion from blended eclipsing binaries. We present a powerful mitigation strategy for the blending problem that includes the use of image deconvolution and high resolution imaging. The techniques are illustrated with Lupus-TR-3 and very recent IR imaging with PANIC on Magellan. The results are likely to have implications for the CoRoT and KEPLER missions designed to detect transiting planets of terrestrial size

    Spitzer 3.6 micron and 4.5 micron full-orbit lightcurves of WASP-18

    Get PDF
    We present new lightcurves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 micron and 4.5 micron. These lightcurves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01% by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 degrees at 3.6 micron and to within about 10 degrees at 4.5 micron. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a lightcurve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 micron and 4.5 micron are in good agreement with previous measurements and imply a very low albedo for WASP-18b. The parameters of the system (masses, radii, etc.) derived from our analysis are in also good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 seconds over 3 years.Comment: 17 pages, 10 figures. Accpeted for publication in MNRA
    • …
    corecore