20,053 research outputs found

    Spark Model for Pulsar Radiation Modulation Patterns

    Get PDF
    A non-stationary polar gap model first proposed by Ruderman & Sutherland (1975) is modified and applied to spark-associated pulsar emission at radio wave-lengths. It is argued that under physical and geometrical conditions prevailing above pulsar polar cap, highly non-stationary spark discharges do not occur at random positions. Instead, sparks should tend to operate in well determined preferred regions. At any instant the polar cap is populated as densely as possible with a number of two-dimensional sparks with a characteristic dimension as well as a typical distance between adjacent sparks being about the polar gap height. Our model differs, however, markedly from its original 'hollow cone' version. The key feature is the quasi-central spark driven by pair production process and anchored to the local pole of a sunspot-like surface magnetic field. This fixed spark prevents the motion of other sparks towards the pole, restricting it to slow circumferential drift across the planes of field lines converging at the local pole. We argue that the polar spark constitutes the core pulsar emission, and that the annular rings of drifting sparks contribute to conal components of the pulsar beam. We found that the number of nested cones in the beam of typical pulsar should not excced three; a number also found by Mitra & Deshpande (1999) using a completely different analysis.Comment: 31 pages, 8 figures, accepted by Ap

    The Morse-Sard theorem revisited

    Full text link
    Let n,m,kn, m, k be positive integers with k=n−m+1k=n-m+1. We establish an abstract Morse-Sard-type theorem which allows us to deduce, on the one hand, a previous result of De Pascale's for Sobolev Wlock,p(Rn,Rm)W^{k,p}_{\textrm{loc}}(\mathbb{R}^n, \mathbb{R}^m) functions with p>np>n and, on the other hand, also the following new result: if f∈Ck−1(Rn,Rm)f\in C^{k-1}(\mathbb{R}^n, \mathbb{R}^m) satisfies lim sup⁥h→0∣Dk−1f(x+h)−Dk−1f(x)∣∣h∣<∞\limsup_{h\to 0}\frac{|D^{k-1}f(x+h)-D^{k-1}f(x)|}{|h|}<\infty for every x∈Rnx\in\mathbb{R}^n (that is, Dk−1fD^{k-1}f is a Stepanov function), then the set of critical values of ff is Lebesgue-null in Rm\mathbb{R}^m. In the case that m=1m=1 we also show that this limiting condition holding for every x∈Rn∖Nx\in\mathbb{R}^n\setminus\mathcal{N}, where N\mathcal{N} is a set of zero (n−2+α)(n-2+\alpha)-dimensional Hausdorff measure for some 0<α<10<\alpha<1, is sufficient to guarantee the same conclusion.Comment: We corrected some misprints and made some changes in the introductio

    Time-scales of Radio Emission in PSR J0437-4715 at 327 MHz

    Get PDF
    Time-scales of radio emission are studied in PSR J0437-4715 at 327 MHz using almost half a million periods of high quality data from Ooty Radio Telescope. The radio emission in this milli second pulsar occurs on a short (s) time-scale of approximately 0.026 +- 0.001 periods, and on a (l) time-scale that is much longer than the widths of the components of the integrated profile (approximately 0.05 periods). The width of the s emission increases with its increasing relative contribution to the total radio emission. This may provide constraints for the details of discharge of vacuum gaps above pulsar polar caps. The s emission occasionally takes place in the form of intense spikes, which are confined to the main component of the integrated profile for 90 per cent of the time. The positions of spikes within a component of the integrated profile have no simple relation to the shape of that component. This may have impact on the interpretation of the integrated profile components in terms of independent regions of emission on the polar cap.Comment: Accepted for publication in Vol 543 (1 Nov 2000) of The Astrophysical Journa

    Frequency dependence of pulsar radiation patterns

    Get PDF
    We report on new results from simultaneous, dual frequency, single pulse observation of PSR B0329+54 using the Giant Metrewave Radio Telescope. We find that the longitude separation of subpulses at two different frequencies (238 and 612 MHz) is less than that for the corresponding components in the average profile. A similar behaviour has been noticed before in a number of pulsars. We argue that subpulses are emitted within narrow flux tubes of the dipolar field lines and that the mean pulsar beam has a conal structure. In such a model the longitudes of profile components are determined by the intersection of the line of sight trajectory with subpulse-associated emission beams. Thus, we show that the difference in the frequency dependence of subpulse and profile component longitudes is a natural property of the conal model of pulsar emission beam. We support our conclusions by numerical modelling of pulsar emission, using the known parameters for this pulsar, which produce results that agree very well with our dual frequency observations.Comment: 24 pages, 8 figures. Accepted for publication in Ap

    Non-linear metric perturbation enhancement of primordial gravitational waves

    Full text link
    We present the evolution of the full set of Einstein equations during preheating after inflation. We study a generic supersymmetric model of hybrid inflation, integrating fields and metric fluctuations in a 3-dimensional lattice. We take initial conditions consistent with Eintein's constraint equations. The induced preheating of the metric fluctuations is not large enough to backreact onto the fields, but preheating of the scalar modes does affect the evolution of vector and tensor modes. In particular, they do enhance the induced stochastic background of gravitational waves during preheating, giving an energy density in general an order of magnitude larger than that obtained by evolving the tensors fluctuations in an homogeneous background metric. This enhancement can improve the expectations for detection by planned gravitational waves observatories.Comment: 5 pages, 4 eps figures, matches Phys. Rev. Lett. versio

    Hall drift in the crust of neutron stars - necessary for radio pulsar activity?

    Get PDF
    The radio pulsar models based on the existence of an inner accelerating gap located above the polar cap rely on the existence of a small scale, strong surface magnetic field BsB_s. This field exceeds the dipolar field BdB_d, responsible for the braking of the pulsar rotation, by at least one order of magnitude. Neither magnetospheric currents nor small scale field components generated during neutron star's birth can provide such field structures in old pulsars. While the former are too weak to create Bs≳5×1013B_s \gtrsim 5\times 10^{13}G  ≫Bd\;\gg B_d, the ohmic decay time of the latter is much shorter than 10610^6 years. We suggest that a large amount of magnetic energy is stored in a toroidal field component that is confined in deeper layers of the crust, where the ohmic decay time exceeds 10710^7 years. This toroidal field may be created by various processes acting early in a neutron star's life. The Hall drift is a non-linear mechanism that, due to the coupling between different components and scales, may be able to create the demanded strong, small scale, magnetic spots. Taking into account both realistic crustal microphysics and a minimal cooling scenario, we show that, in axial symmetry, these field structures are created on a Hall time scale of 10310^3-10410^4 years. These magnetic spots can be long-lived, thereby fulfilling the pre-conditions for the appearance of the radio pulsar activity. Such magnetic structures created by the Hall drift are not static, and dynamical variations on the Hall time scale are expected in the polar cap region.Comment: 4 pages, 5 figures, contribution to the ERPM conferences, Zielona Gora, April 201

    The spark-associated soliton model for pulsar radio emission

    Get PDF
    We propose a new, self-consistent theory of coherent pulsar radio emission based on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the polar cap is populated as densely as possible by a number of sparks with a characteristic perpendicular dimension D approximately equal to the polar gap height scale h, separated from each other also by about h. Each spark reappears in approximately the same place on the polar cap for a time scale much longer than its life-time and delivers to the open magnetosphere a sequence of electron-positron clouds which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of particles with different momenta from consecutive clouds leads to effective two-stream instability, which triggers electrostatic Langmuir waves at the altitudes of about 50 stellar radii. The electrostatic oscillations are modulationally unstable and their nonlinear evolution results in formation of ``bunch-like'' charged solitons. A characteristic soliton length along magnetic field lines is about 30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths. The net soliton charge is about 10^21 fundamental charges, contained within a volume of about 10^14 cm^3. For a typical pulsar, there are about 10^5 solitons associated with each of about 25 sparks operating on the polar cap at any instant. One soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order of 100 generates a power of about 10^21 erg/s by means of curvature radiation. Then the total power of a typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap
    • 

    corecore