23,341 research outputs found

    Interstellar Scintillations of Polarization of Compact Sources

    Get PDF
    We demostrate that the measurement of fluctuations of polarization due to the galactic interstellar scintillations may be used to study the structure of the radiation field at compact radio sources. We develop a mathematical formalism and demonstrate it on a simple analytical model in which the scale of the polarization variation through the source is comparable to the source size. The predicted amplitude of modulation of the polarized radiation flux is ~20% x (pi_s) x (m_sc), where (pi_s) is the characteristic degree of polarization of radiation at the source and (m_sc) is the typical modulation index due to scattering, i.e., (m_sc)~1 for diffractive scintillations and (m_sc)<1 for refractive scintillations.Comment: 5 pages, 2 figures, emilateapj.sty. Submitted to ApJ

    On the Stability of Coherent States for Pais-Uhlenbeck Oscillator

    Full text link
    We have constructed coherent states for the higher derivative Pais-Uhlenbeck Oscillator. In the process we have suggested a novel way to construct coherent states for the oscillator having only negative energy levels. These coherent states have negative energies in general but their coordinate and momentum expectation values and dispersions behave in an identical manner as that of normal (positive energy) oscillator. The coherent states for the Pais-Uhlenbeck Oscillator have constant dispersions and a modified Heisenberg Uncertainty Relation. Moreover, under reasonable assumptions on parameters these coherent states can have positive energies.Comment: Title changed, modified version with no major change in results and conclusions, to appear in Mod.Phys.Lett.

    Realistic theory of electromagnetically-induced transparency and slow light in a hot vapor of atoms undergoing collisions

    Full text link
    We present a realistic theoretical treatment of a three-level Λ\Lambda system in a hot atomic vapor interacting with a coupling and a probe field of arbitrary strengths, leading to electromagnetically-induced transparency and slow light under the two-photon resonance condition. We take into account all the relevant decoherence processes including col5Blisions. Velocity-changing collisions (VCCs) are modeled in the strong collision limit effectively, which helps in achieving optical pumping by the coupling beam across the entire Doppler profile. The steady-state expressions for the atomic density-matrix elements are numerically evaluated to yield the experimentally measured response characteristics. The predictions, taking into account a dynamic rate of influx of atoms in the two lower levels of the Λ\Lambda, are in excellent agreement with the reported experimental results for 4^4He*. The role played by the VCC parameter is seen to be distinct from that by the transit time or Raman coherence decay rate

    Higher anisotropic d-wave symmetry in cuprate superconductors

    Full text link
    We derive a pair potential from tight binding further neighbours attraction that leads to superconducting gap symmetry similar to that of the phenomenological spin fluctuation theory of high temperature superconductors (Monthoux, Balatsky, Pines, Phys. Rev. Lett. {\bf 67}, 3448). We show that higher anisotropic d-wave than the simpliest d-wave symmetry is one of the important ingredients responsible for higher BCS characteristic ratio.Comment: Latex 5 pages, 3 figures attached, Journal Ref. : Journal of Physics C, Vol. 11, issue 30, L371-L377 (1999

    Bell's theorem as a signature of nonlocality: a classical counterexample

    Full text link
    For a system composed of two particles Bell's theorem asserts that averages of physical quantities determined from local variables must conform to a family of inequalities. In this work we show that a classical model containing a local probabilistic interaction in the measurement process can lead to a violation of the Bell inequalities. We first introduce two-particle phase-space distributions in classical mechanics constructed to be the analogs of quantum mechanical angular momentum eigenstates. These distributions are then employed in four schemes characterized by different types of detectors measuring the angular momenta. When the model includes an interaction between the detector and the measured particle leading to ensemble dependencies, the relevant Bell inequalities are violated if total angular momentum is required to be conserved. The violation is explained by identifying assumptions made in the derivation of Bell's theorem that are not fulfilled by the model. These assumptions will be argued to be too restrictive to see in the violation of the Bell inequalities a faithful signature of nonlocality.Comment: Extended manuscript. Significant change

    A Radio Spectral Line Study of the 2-Jy IRAS-NVSS Sample: Part I

    Full text link
    We present results from an on-going survey for the HI 21 cm line and the OH 18 cm lines in IR galaxies with the Arecibo 305 m Radio Telescope. The observations of 85 galaxies extracted from the 2 Jy IRAS-NVSS sample in the R.A. (B1950) range 20 h-00 h are reported in this paper. We detected the HI 21 cm line in 82 of these galaxies, with 18 being new detections, and the OH 18 cm lines in 7 galaxies, with 4 being new detections. In some cases, the HI spectra show the classic double-horned or single-peaked emission profiles. However, the majority exhibit distorted HI spectral features indicating that the galaxies are in interacting and/or merging systems. From these HI and OH observations, various properties of the sample are derived and reported.Comment: 38 pages, 7 figures, 9 tables. Accepted for publication in A

    Monte Carlo simulation for statistical mechanics model of ion channel cooperativity in cell membranes

    Full text link
    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.Comment: Paper has been revise
    • …
    corecore