5 research outputs found
Modifications des naevus mélanocytaires pendant la grossesse (étude prospective vidéodermoscopique)
NICE-BU Médecine Odontologie (060882102) / SudocSudocFranceF
A Unifying Method to Study Respiratory Sinus Arrhythmia Dynamics Implemented in a New Toolbox
Respiratory sinus arrhythmia (RSA), the natural variation in heart rate synchronized with respiration, has been extensively studied in emotional and cognitive contexts. Various time or frequency-based methods using the cardiac signal have been proposed to analyze RSA. In this study, we present a novel approach that combines respiratory phase and heart rate to enable a more detailed analysis of RSA and its dynamics throughout the respiratory cycle. To facilitate the application of this method, we have implemented it in an open-source Python toolbox called physio . This toolbox includes essential functionalities for processing electrocardiogram (ECG) and respiratory signals, while also introducing this new approach for RSA analysis. Inspired by previous research conducted by our group, this method enables a cycle-by-cycle analysis of RSA providing the possibility to correlate any respiratory feature to any RSA feature. By employing this approach, we aim to gain a more accurate understanding of the neural mechanisms associated with RSA
A unifying method to study Respiratory Sinus Arrhythmia dynamics implemented in a new toolbox
Respiratory sinus arrhythmia (RSA), the natural variation in heart rate synchronized with respiration, has been extensively studied in emotional and cognitive contexts. Various time or frequency-based methods using the cardiac signal have been proposed to analyze RSA. In this study, we present a novel approach that combines respiratory phase and heart rate to enable a more detailed analysis of RSA and its dynamics throughout the respiratory cycle. To facilitate the application of this method, we have implemented it in an open-source Python toolbox called physio. This toolbox includes essential functionalities for processing ECG and respiratory signals, while also introducing this new approach for RSA analysis. Inspired by previous research conducted by our group, this method enables a cycle-by-cycle analysis of RSA providing the possibility to correlate any respiratory feature to any RSA feature. By employing this approach, we aim to gain a more accurate understanding of the neural mechanisms associated with RSA