2,041 research outputs found
Image quality assessment based on harmonics gain/loss information
We present an objective reduced-reference image quality assessment method based on harmonic gain/loss information through a discriminative analysis of local harmonic strength (LHS). The LHS is computed from the gradient of images, and its value represents a relative degree of the appearance of blockiness on images when it is related to energy gain within an image. Furthermore, comparison between local harmonic strength values from an original, distortion-free image and a degraded, processed, or compressed version of the image shows that the LHS can also be used to indicate other types of degradations, such as blurriness that corresponds with energy loss. Our simulations show that we can develop a single metric based on this gain/loss information and use it to rate the quality of images encoded by various encoders such as DCT-based JPEG, wavelet-based JPEG 2000, or various processed images. We show that our method can overcome some limitations of the traditional PSNR
Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect
Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality
Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link
Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p
Modeling the Drying Kinetics of Green Bell Pepper in a Heat Pump Assisted Fluidized Bed Dryer
In this research, green bell pepper was dried in a pilot plant fluidized bed dryer equipped with a heat pump humidifier using three temperatures of 40, 50 and 60C and two airflow velocities of 2 and 3m/s in constant air moisture. Three modeling methods including nonlinear regression technique, Fuzzy Logic and Artificial Neural Networks were applied to investigate drying kinetics for the sample. Among the mathematical models, Midilli model with R=0.9998 and root mean square error (RMSE)=0.00451 showed the best fit with experimental data. Feed-Forward-Back-Propagation network with Levenberg-Marquardt training algorithm, hyperbolic tangent sigmoid transfer function, training cycle of 1,000 epoch and 2-5-1 topology, deserving R=0.99828 and mean square error (MSE)=5.5E-05, was determined as the best neural model. Overall, Neural Networks method was much more precise than two other methods in prediction of drying kinetics and control of drying parameters for green bell pepper. Practical Applications: This article deals with different modeling approaches and their effectiveness and accuracy for predicting changes in the moisture ratio of green bell pepper enduring fluidized bed drying, which is one of the most concerning issues in food factories involved in drying fruits and vegetables. This research indicates that although efficiency of mathematical modeling, Fuzzy Logic controls and Artificial Neural Networks (ANNs) were all acceptable, the modern prediction methods of Fuzzy Logic and especially ANNs were more productive and precise. Besides, this report compares our findings with previous ones carried out with the view of predicting moisture quotients of other food crops during miscellaneous drying procedures. © 2016 Wiley Periodicals, Inc
- …