946 research outputs found
Ontology-based Domain Diversity Profiling of User Comments
Diversity has been the subject of study in various disciplines from biology to social science and computing. Respecting and utilising the diversity of the population is increasingly important to broadening knowledge. This paper describes a pipeline for diversity profiling of a pool of text in order to understand its coverage of an underpinning domain. The application is illustrated by using a domain ontology on presentation skills in a case study with 38 postgraduates who made comments while learning pitch presentations with the Active Video Watching system (AVW-Space). The outcome shows different patterns of coverage on the domain by the comments in each of the eight videos
Extinction times in the subcritical stochastic SIS logistic epidemic
Many real epidemics of an infectious disease are not straightforwardly super-
or sub-critical, and the understanding of epidemic models that exhibit such
complexity has been identified as a priority for theoretical work. We provide
insights into the near-critical regime by considering the stochastic SIS
logistic epidemic, a well-known birth-and-death chain used to model the spread
of an epidemic within a population of a given size . We study the behaviour
of the process as the population size tends to infinity. Our results cover
the entire subcritical regime, including the "barely subcritical" regime, where
the recovery rate exceeds the infection rate by an amount that tends to 0 as but more slowly than . We derive precise asymptotics for
the distribution of the extinction time and the total number of cases
throughout the subcritical regime, give a detailed description of the course of
the epidemic, and compare to numerical results for a range of parameter values.
We hypothesise that features of the course of the epidemic will be seen in a
wide class of other epidemic models, and we use real data to provide some
tentative and preliminary support for this theory.Comment: Revised; 34 pages; 6 figure
We are all teacher educators now: understanding school-based teacher educators in times of change in England
Within the context of the European Commission’s recent policy gaze on teacher education (European Commission, Improving teacher quality: The EU agenda – lifelong learning: policies and programme. Brussels, April 2010, EAC.B.2. D (2010) PSH, 2010; European Commission, Supporting teacher educators for better learning outcomes. European Commission, Brussels, 2013; European Commission, Strengthening teaching in Europe: new evidence from teachers compiled by Eurydice and CRELL, June 2015. Available from: http://ec.europa.eu/education/library/policy/teaching-profession-practices_en.pdf, 2015), this chapter contributes to an improved understanding of the hybrid, poly-contextualised identities of school-based teacher educators. At a time of systemic change in the education systems of many countries, teachers in schools are increasingly being asked to be responsible for the education and training of future teachers. Within the English backdrop of a rapidly changing landscape for teacher education, we present initial findings from a small-scale study exploring, through interview data, how the knowledge bases and identities of two groups of insiders, university and school-based teacher educators, were perceived by those hybrid teacher educators (Zeichner 2010) working in schools. Our findings reveal differences in school-based teacher educators’ views on their work and the work of university-based teacher educators, school-based teacher educators’ views on the role educational research has in the work they do and the ways in which different professional pathways (e.g. occupational/university; primary/secondary) influence views on what it means to be a teacher educator
Distortions of Subjective Time Perception Within and Across Senses
Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood.
Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations.
Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
Over the past five decades, k-means has become the clustering algorithm of
choice in many application domains primarily due to its simplicity, time/space
efficiency, and invariance to the ordering of the data points. Unfortunately,
the algorithm's sensitivity to the initial selection of the cluster centers
remains to be its most serious drawback. Numerous initialization methods have
been proposed to address this drawback. Many of these methods, however, have
time complexity superlinear in the number of data points, which makes them
impractical for large data sets. On the other hand, linear methods are often
random and/or sensitive to the ordering of the data points. These methods are
generally unreliable in that the quality of their results is unpredictable.
Therefore, it is common practice to perform multiple runs of such methods and
take the output of the run that produces the best results. Such a practice,
however, greatly increases the computational requirements of the otherwise
highly efficient k-means algorithm. In this chapter, we investigate the
empirical performance of six linear, deterministic (non-random), and
order-invariant k-means initialization methods on a large and diverse
collection of data sets from the UCI Machine Learning Repository. The results
demonstrate that two relatively unknown hierarchical initialization methods due
to Su and Dy outperform the remaining four methods with respect to two
objective effectiveness criteria. In addition, a recent method due to Erisoglu
et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms
(Springer, 2014). arXiv admin note: substantial text overlap with
arXiv:1304.7465, arXiv:1209.196
Extragalactic Radio Continuum Surveys and the Transformation of Radio Astronomy
Next-generation radio surveys are about to transform radio astronomy by
discovering and studying tens of millions of previously unknown radio sources.
These surveys will provide new insights to understand the evolution of
galaxies, measuring the evolution of the cosmic star formation rate, and
rivalling traditional techniques in the measurement of fundamental cosmological
parameters. By observing a new volume of observational parameter space, they
are also likely to discover unexpected new phenomena. This review traces the
evolution of extragalactic radio continuum surveys from the earliest days of
radio astronomy to the present, and identifies the challenges that must be
overcome to achieve this transformational change.Comment: To be published in Nature Astronomy 18 Sept 201
Individualism and stock price crash risk
Employing a sample of 26,473 firms across 42 countries from 1990 to 2013, we find that firms located in countries with higher individualism have higher stock price crash risk. Furthermore, individualism can be transmitted by foreign investors from overseas markets to influence local firms’ crash risk, and can exacerbate the impact of firm risk taking and earnings management on crash risk. Moreover, the positive relation between individualism and crash risk is amplified during the global financial crisis and attenuated by enhanced country-level financial information transparency and the adoption of International Financial Reporting Standards
Benefits of Stimulus Congruency for Multisensory Facilitation of Visual Learning
Background. Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning. Methodology/Principle Findings. Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli. Conclusions/ Significance. This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
- …