13 research outputs found

    Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis

    Get PDF
    Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity

    The GTP-binding protein, Go, regulates neuronal calcium channels

    No full text
    In neuronal cells, opioid peptides and opiates inhibit neurotransmitter release, which is a calcium-dependent process. They also inhibit adenylyl cyclase, presumably via the membrane signal-transducing component, Gi, a guanine nucleotide-binding protein (G-protein). No causal relationship between these two events has yet been demonstrated. Besides Gi, membranes of neuronal tissues contain large amounts of Go, a G-protein with unknown function. Both G-proteins are heterotrimers consisting of alpha-, beta- and gamma-subunits; the alpha-subunits can be ADP-ribosylated by an exotoxin from Bordetella pertussis (PT), which modification inhibits receptor-mediated activation of the G-protein. It was recently shown that noradrenaline, dopamine and gamma-aminobutyric acid (GABA) inhibit the voltage-dependent calcium channels in dorsal root and sympathetic ganglia; this inhibition is mimicked by intracellular application of guanine nucleotides and blocked by PT, suggesting the involvement of a G-protein. Here we report an inhibitory effect of the opioid D-Ala2, D-Leu5-enkephalin (DADLE) on the calcium current (ICa) in neuroblastoma X glioma hybrid cells (N X G cells). Pretreatment with PT almost completely abolishes the DADLE effect. The effect is restored by intracellular application of Gi and Go. As the alpha-subunit of Go (with or without beta-gamma complex) is 10 times more potent than Gi, we propose that Go is involved in the functional coupling of opiate receptors to neuronal voltage-dependent calcium channels
    corecore