35 research outputs found

    Resolving the neural circuits of anxiety

    Get PDF
    Although anxiety disorders represent a major societal problem demanding new therapeutic targets, these efforts have languished in the absence of a mechanistic understanding of this subjective emotional state. While it is impossible to know with certainty the subjective experience of a rodent, rodent models hold promise in dissecting well-conserved limbic circuits. The application of modern approaches in neuroscience has already begun to unmask the neural circuit intricacies underlying anxiety by allowing direct examination of hypotheses drawn from existing psychological concepts. This information points toward an updated conceptual model for what neural circuit perturbations could give rise to pathological anxiety and thereby provides a roadmap for future therapeutic development.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (NIH Director’s New Innovator Award DP2-DK-102256-01)National Institute of Mental Health (U.S.) (NIH) R01-MH102441-01)JPB Foundatio

    Postulated Vasoactive Neuropeptide Autoimmunity in Fatigue-Related Conditions: A Brief Review and Hypothesis

    Get PDF
    Disorders such as chronic fatigue syndrome (CFS) and gulf war syndrome (GWS) are characterised by prolonged fatigue and a range of debilitating symptoms of pain, intellectual and emotional impairment, chemical sensitivities and immunological dysfunction. Sudden infant death syndrome (SIDS) surprisingly may have certain features in common with these conditions. Post-infection sequelae may be possible contributing factors although ongoing infection is unproven. Immunological aberration may prove to be associated with certain vasoactive neuropeptides (VN) in the context of molecular mimicry, inappropriate immunological memory and autoimmunity

    Self-regulated plasma heat flux mitigation due to liquid Sn vapor shielding

    Get PDF
    A steady-state high-flux H or He plasma beam was balanced against the pressure of a Sn vapor cloud for the first time, resulting in a self-regulated heat flux intensity near the liquid surface. A temperature response of the liquid surface characterized by a decoupling from the received heating power and significant cooling of the plasma in the neutral Sn cloud were observed. The plasma heat flux impinging on the target was found to be mitigated, as heat was partially dissipated by volumetric processes in the vapor cloud rather than wholly by surface effects. These results motivate further exploration of liquid metal solutions to the critical challenge of heat and particle flux handling in fusion power plants

    Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices

    No full text
    \u3cp\u3eFor DEMO and beyond, liquid metal plasma-facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however, and tokamak-based research is currently somewhat limited in scope. Therefore, investigation into linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO-relevant plasma fluxes, which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour shielding, erosion under high particle flux loading and overall power handling are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong redeposition rates, which have been observed under this type of high-density plasma, this implies that an increase in the operational temperature range, implying a power handling range of 20-25 MW m\u3csup\u3e-2\u3c/sup\u3e for Sn and up to 12.5 MW m\u3csup\u3e-2\u3c/sup\u3e for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.\u3c/p\u3

    Plasma radiation studies in Magnum-PSI using resistive bolometry

    No full text
    \u3cp\u3eBoth the physics of divertor detachment and vapour shielding are characterized by a relatively large amount of radiation produced in the divertor. The linear plasma generator Magnum-PSI is well-suited to study such processes due to its ITER-divertor relevant plasma conditions, simplified geometry and diagnostic accessibility. The need the quantify the plasma radiated power close to the target surface motivated the development of a 4-channel resistive bolometer for Magnum-PSI, and marks the first deployment of such a diagnostic on a linear device. An axially resolved measurement of plasma emission at arbitrary distances from the target surface is now possible. The radial position of the detector can be varied, hereby viewing the full diameter of the plasma column or down to a central region. The overall system design is discussed alongside a comparison of the spectral absorbance of carbon-coated versus non-coated Au/Al bolometer sensors. Despite low electron temperatures of the plasma (1-5 eV), the observed power densities were found to be 10-37 times the sensor noise floor of ∼0.1 W m\u3csup\u3e-2\u3c/sup\u3e. A synthetic diagnostic based on collisional radiative model calculations from ADAS could well match observed values from H and Ne plasmas while the measured values for Ar and He were more difficult to reproduce. The obtained findings allow for approximate power balance calculations in Magnum-PSI indicating that maximally ∼47% and ∼14% of the total power is lost by radiation in the cases of Ar and Ne/He respectively. The results demonstrate the feasibility of resistive bolometry in low temperature high density plasma regions and on long timescales (>450 s) which is of relevance to ITER. Due to long-term temperature drifts which were observed, a recent upgrade involved the installation of a shutter and FPGA-based electronics for increased accuracy.\u3c/p\u3

    Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    No full text
    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm2 for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm2

    Operational characteristics of the superconducting high flux plasma generator Magnum-PSI

    No full text
    \u3cp\u3eThe interaction of intense plasma impacting on the wall of a fusion reactor is an area of high and increasing importance in the development of electricity production from nuclear fusion. In the Magnum-PSI linear device, an axial magnetic field confines a high density, low temperature plasma produced by a wall stabilized DC cascaded arc into an intense magnetized plasma beam directed onto a target. The experiment has shown its capability to reach conditions that enable fundamental studies of plasma-surface interactions in the regime relevant for fusion reactors such as ITER: 10\u3csup\u3e23\u3c/sup\u3e–10\u3csup\u3e25\u3c/sup\u3e m\u3csup\u3e−2\u3c/sup\u3es\u3csup\u3e−1\u3c/sup\u3e hydrogen plasma flux densities at 1–5 eV for tens of seconds by using conventional electromagnets. Recently the machine was upgraded with a superconducting magnet, enabling steady-state magnetic fields up to 2.5 T, expanding the operational space to high fluence capabilities for the first time. Also the diagnostic suite has been expanded by a new 4-channel resistive bolometer array and ion beam analysis techniques for surface analysis after plasma exposure of the target. A novel collective Thomson scattering system has been developed and will be implemented on Magnum-PSI. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.\u3c/p\u3

    Operational characteristics of the high flux plasma generator magnum-PSI

    No full text
    \u3cp\u3eIn Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma-surface interactions in the regime relevant for fusion reactors such as ITER: 10\u3csup\u3e23\u3c/sup\u3e-10\u3csup\u3e25\u3c/sup\u3e m \u3csup\u3e-2\u3c/sup\u3e s\u3csup\u3e-1\u3c/sup\u3e hydrogen plasma flux densities at 1-5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.\u3c/p\u3
    corecore