30 research outputs found
Anomalous Scaling of Structure Functions and Dynamic Constraints on Turbulence Simulations
The connection between anomalous scaling of structure functions
(intermittency) and numerical methods for turbulence simulations is discussed.
It is argued that the computational work for direct numerical simulations (DNS)
of fully developed turbulence increases as , and not as
expected from Kolmogorov's theory, where is a large-scale Reynolds number.
Various relations for the moments of acceleration and velocity derivatives are
derived. An infinite set of exact constraints on dynamically consistent subgrid
models for Large Eddy Simulations (LES) is derived from the Navier-Stokes
equations, and some problems of principle associated with existing LES models
are highlighted.Comment: 18 page
Ï production in pâPb collisions at âsNN=8.16 TeV
Ï production in pâPb interactions is studied at the centre-of-mass energy per nucleonânucleon collision âsNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and â4.46 < ycms < â2.96, down to zero transverse momentum. In this work, results on the Ï(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the Ï(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the Ï(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the Ï(1S). A first measurement of the Ï(3S) has also been performed. Finally, results are compared with previous ALICE measurements in pâPb collisions at âsNN = 5.02 TeV and with theoretical calculations.publishedVersio
Functional reconstruction of motor and language pathways based on navigated transcranial magnetic stimulation and DTI fiber tracking for the preoperative planning of low grade glioma surgery: A new tool for preservation and restoration of eloquent networks
Background: Surgery of low-grade gliomas (LGGs) in eloquent areas still presents a challenge. New technologies have been introduced to enable the performance of "functional", customized preoperative planning aimed at maximal resection, while reducing the risk of postoperative deficits. We describe our experience in the surgery of LGGs in eloquent areas using preoperative planning based on navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography. METHODS: Sixteen patients underwent preoperative planning, using nTMS and nTMS-based DTI tractography. Motor and language functions were mapped. Preoperative data allowed for tailoring of the surgical strategy. The impact of these modalities on surgical planning was evaluated. Influence on functional outcome was analyzed in comparison with results in a historical control group. RESULTS: In 12 patients (75 %), nTMS added useful information on functional anatomy and surgical risks. Surgical strategy was modified in 9 of 16 cases (56 %). The nTMS "functional approach" provided a good outcome at discharge, with a decrease in postoperative motor and/or language deficits, as compared with controls (6 vs. 44 %; p = 0.03). CONCLUSIONS: The functional preoperative mapping of speech and motor pathways based on nTMS and DTI tractography provided useful information, allowing us to plan the best surgical strategy for radical resection; this resulted in improved postoperative neurological results