90 research outputs found
Nonlinear subband decomposition structures in GF-(N) arithmetic
Cataloged from PDF version of article.In this paper, perfect reconstruction filter bank structures for GF-(N) fields are developed. The new filter banks are based on the nonlinear subband decomposition and they are especially useful to process binary images such as document and fingerprint images. (C) 1998 Elsevier Science B.V. All rights reserved
Collective Dynamics Differentiates Functional Divergence in Protein Evolution
Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function
Low-Dose CT Image Enhancement Using Deep Learning
The application of ionizing radiation for diagnostic imaging is common around
the globe. However, the process of imaging, itself, remains to be a relatively
hazardous operation. Therefore, it is preferable to use as low a dose of
ionizing radiation as possible, particularly in computed tomography (CT)
imaging systems, where multiple x-ray operations are performed for the
reconstruction of slices of body tissues. A popular method for radiation dose
reduction in CT imaging is known as the quarter-dose technique, which reduces
the x-ray dose but can cause a loss of image sharpness. Since CT image
reconstruction from directional x-rays is a nonlinear process, it is
analytically difficult to correct the effect of dose reduction on image
quality. Recent and popular deep-learning approaches provide an intriguing
possibility of image enhancement for low-dose artifacts. Some recent works
propose combinations of multiple deep-learning and classical methods for this
purpose, which over-complicate the process. However, it is observed here that
the straight utilization of the well-known U-NET provides very successful
results for the correction of low-dose artifacts. Blind tests with actual
radiologists reveal that the U-NET enhanced quarter-dose CT images not only
provide an immense visual improvement over the low-dose versions, but also
become diagnostically preferable images, even when compared to their full-dose
CT versions
Are Deep Learning Classification Results Obtained on CT Scans Fair and Interpretable?
Following the great success of various deep learning methods in image and
object classification, the biomedical image processing society is also
overwhelmed with their applications to various automatic diagnosis cases.
Unfortunately, most of the deep learning-based classification attempts in the
literature solely focus on the aim of extreme accuracy scores, without
considering interpretability, or patient-wise separation of training and test
data. For example, most lung nodule classification papers using deep learning
randomly shuffle data and split it into training, validation, and test sets,
causing certain images from the CT scan of a person to be in the training set,
while other images of the exact same person to be in the validation or testing
image sets. This can result in reporting misleading accuracy rates and the
learning of irrelevant features, ultimately reducing the real-life usability of
these models. When the deep neural networks trained on the traditional, unfair
data shuffling method are challenged with new patient images, it is observed
that the trained models perform poorly. In contrast, deep neural networks
trained with strict patient-level separation maintain their accuracy rates even
when new patient images are tested. Heat-map visualizations of the activations
of the deep neural networks trained with strict patient-level separation
indicate a higher degree of focus on the relevant nodules. We argue that the
research question posed in the title has a positive answer only if the deep
neural networks are trained with images of patients that are strictly isolated
from the validation and testing patient sets.Comment: This version has been submitted to CAAI Transactions on Intelligence
Technology. 202
Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation
Predictive Power of Molecular Dynamics Receptor Structures in Virtual Screening
Molecular dynamics (MD) simulation is a well-established method for understanding protein dynamics. Conformations from unrestrained MD simulations have yet to be assessed for blind virtual screening (VS) by docking. This study presents a critical analysis of the predictive power of MD snapshots to this regard, evaluating two well-characterized systems of varying flexibility in ligand-bound and unbound configurations. Results from such VS predictions are discussed with respect to experimentally determined structures. In all cases, MD simulations provide snapshots that improve VS predictive power over known crystal structures, possibly due to sampling more relevant receptor conformations. Additionally, MD can move conformations previously not amenable to docking into the predictive range
Detailed Regulatory Mechanism of the Interaction between ZO-1 PDZ2 and Connexin43 Revealed by MD Simulations
The gap junction protein connexin43 (Cx43) binds to the second PDZ domain of Zonula occludens-1 (ZO-1) through its C-terminal tail, mediating the regulation of gap junction plaque size and dynamics. Biochemical study demonstrated that the very C-terminal 12 residues of Cx43 are necessary and sufficient for ZO-1 PDZ2 binding and phosphorylation at residues Ser (-9) and Ser (-10) of the peptide can disrupt the association. However, only a crystal structure of ZO-1 PDZ2 in complex with a shorter 9 aa peptide of connexin43 was solved experimentally. Here, the interactions between ZO-1 PDZ2 and the short, long and phosphorylated Cx43 peptides were studied using molecular dynamics (MD) simulations and free energy calculation. The short peptide bound to PDZ2 exhibits large structural variations, while the extension of three upstream residues stabilizes the peptide conformation and enhanced the interaction. Phosphorylation at Ser(-9) significantly weakens the binding and results in conformational flexibility of the peptide. Glu210 of ZO-1 PDZ2 was found to be a key regulatory point in Cx43 binding and phosphorylation induced dissociation
Beyond the Binding Site: The Role of the β2 – β3 Loop and Extra-Domain Structures in PDZ Domains
A general paradigm to understand protein function is to look at properties of isolated well conserved domains, such as SH3 or PDZ domains. While common features of domain families are well understood, the role of subtle differences among members of these families is less clear. Here, molecular dynamics simulations indicate that the binding mechanism in PSD95-PDZ3 is critically regulated via interactions outside the canonical binding site, involving both the poorly conserved loop and an extra-domain helix. Using the CRIPT peptide as a prototypical ligand, our simulations suggest that a network of salt-bridges between the ligand and this loop is necessary for binding. These contacts interconvert between each other on a time scale of a few tens of nanoseconds, making them elusive to X-ray crystallography. The loop is stabilized by an extra-domain helix. The latter influences the global dynamics of the domain, considerably increasing binding affinity. We found that two key contacts between the helix and the domain, one involving the loop, provide an atomistic interpretation of the increased affinity. Our analysis indicates that both extra-domain segments and loosely conserved regions play critical roles in PDZ binding affinity and specificity
Binding Free Energy Landscape of Domain-Peptide Interactions
Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective using an all-atom Monte Carlo (MC) approach. Our focus is two different PDZ domains representing two major PDZ classes, I and II. For both domains, a binding free energy surface with a strong bias toward the native bound state is found. Moreover, both domains exhibit a binding process in which the peptides are mostly either bound at the PDZ binding pocket or else interact little with the domain surface. Consistent with this, various binding observables show a temperature dependence well described by a simple two-state model. We also find important differences in the details between the two domains. While both domains exhibit well-defined binding free energy barriers, the class I barrier is significantly weaker than the one for class II. To probe this issue further, we apply our method to a PDZ domain with dual specificity for class I and II peptides, and find an analogous difference in their binding free energy barriers. Lastly, we perform a large number of fixed-temperature MC kinetics trajectories under binding conditions. These trajectories reveal significantly slower binding dynamics for the class II domain relative to class I. Our combined results are consistent with a binding mechanism in which the peptide C terminal residue binds in an initial, rate-limiting step
- …