24 research outputs found
Critical Exponents for Granular Phase Transitions
The solid--fluid phase transition of a granular material shaken horizontally
is investigated numerically. We find that it is a second-order phase transition
and propose two order parameters, namely the averaged kinetic energy and the
averaged granular temperature, to determine the fluidization point precisely.
It scales with the acceleration of the external vibration. Using this
fluidization point as critical point, we discuss the scaling of the kinetic
energy and show that the kinetic energy and the granular temperature show two
different universal critical point exponents for a wide range of excitation
amplitudes.Comment: 6 pages, including 6 figures. Uses Epic and EEpic macros (provided
Tumbling Motion of Elliptical Particles in Viscous Two-Dimensional Flow
The settling dynamics of spherical and elliptical particles in a viscous
Newtonian fluid are investigated numerically using a finite difference
technique. The terminal velocity for spherical particles is calculated for
different system sizes and the extrapolated value for an infinite system size
is compared to the Oseen approximation. Special attention is given to the
settling and tumbling motion of elliptical particles where their terminal
velocity is compared with the one of the surface equivalent spherical particle.Comment: 13 pages, 8 figures (within text), uses IJMPC macros (included
Competition of mixing and segregation in rotating cylinders
Using discrete element methods, we study numerically the dynamics of the size
segregation process of binary particle mixtures in three-dimensional rotating
drums, operated in the continuous flow regime. Particle rotations are included
and we focus on different volume filling fractions of the drum to study the
interplay between the competing phenomena of mixing and segregation. It is
found that segregation is best for a more than half-filled drum due to the
non-zero width of the fluidized layer. For different particle size ratios, it
is found that radial segregation occurs for any arbitrary small particle size
difference and the final amount of segregation shows a linear dependence on the
size ratio of the two particle species. To quantify the interplay between
segregation and mixing, we investigate the dynamics of the center of mass
positions for each particle component. Starting with initially separated
particle groups we find that no mixing of the component is necessary in order
to obtain a radially segregated core.Comment: 9 pages, 12 figures (EPIC/EEPIC & EPS, macros included), submitted to
Physics of Fluid
ac-Field-Controlled Anderson Localization in Disordered Semiconductor Superlattices
An ac field, tuned exactly to resonance with the Stark ladder in an ideal
tight binding lattice under strong dc bias, counteracts Wannier-Stark
localization and leads to the emergence of extended Floquet states. If there is
random disorder, these states localize. The localization lengths depend
non-monotonically on the ac field amplitude and become essentially zero at
certain parameters. This effect is of possible relevance for characterizing the
quality of superlattice samples, and for performing experiments on Anderson
localization in systems with well-defined disorder.Comment: 10 pages, Latex; figures available on request from [email protected]
Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2
<p>Abstract</p> <p>Background</p> <p>Both resveratrol and vitamin C (ascorbic acid) are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid.</p> <p>Methods</p> <p>The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays.</p> <p>Results</p> <p>Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid.</p> <p>Conclusions</p> <p>Unlike heme oxygenase-1 (which is highly regulated by Nrf2) paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter) induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.</p