57 research outputs found

    Misty Mountain clustering: application to fast unsupervised flow cytometry gating

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are many important clustering questions in computational biology for which no satisfactory method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then selected by various criteria. These supervised serial clustering methods are time consuming and frequently different criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been developed such as affinity propagation are too expensive to be applied to datasets on the order of 10<sup>6 </sup>points that are often generated by high throughput experiments.</p> <p>Results</p> <p>To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm, called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the composite steps of the algorithm increases linearly by the number of data points. The clustering of 10<sup>6 </sup>data points in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain provides substantial improvements in both run time and in the accuracy of cluster assignment.</p> <p>Conclusions</p> <p>Misty Mountain is fast, unbiased for cluster shape, identifies stable clusters and is robust to noise. It provides a useful, general solution for multidimensional clustering problems. We demonstrate its suitability for automated gating of flow cytometry data.</p

    Total blood lymphocyte counts in hemochromatosis probands with HFE C282Y homozygosity: relationship to severity of iron overload and HLA-A and -B alleles and haplotypes

    Get PDF
    BACKGROUND: It has been reported that some persons with hemochromatosis have low total blood lymphocyte counts, but the reason for this is unknown. METHODS: We measured total blood lymphocyte counts using an automated blood cell counter in 146 hemochromatosis probands (88 men, 58 women) with HFE C282Y homozygosity who were diagnosed in medical care. Univariate and multivariate analyses of total blood lymphocyte counts were evaluated using these variables: sex; age, transferrin saturation, and serum ferritin concentration at diagnosis; units of blood removed by phlebotomy to achieve iron depletion; and human leukocyte antigen (HLA)-A and -B alleles and haplotypes. RESULTS: The mean age at diagnosis was 49 ± 14 years (range 18 – 80 years) in men and 50 ± 13 years (range 22 – 88 years) in women. The correlations of total blood lymphocyte counts with sex, age, transferrin saturation, and serum ferritin concentration at diagnosis, and units of blood removed by phlebotomy to achieve iron depletion were not significant at the 0.05 level. Univariate analyses revealed significant associations between total blood lymphocyte counts and presence of the HLA-A*01, -B*08, and -B*14 alleles, and the A*01-B*08 haplotype. Presence of the A*01 allele, B*08 allele, or A*01-B*08 haplotype were associated with a lower total blood lymphocyte count, whereas presence of the B*14 allele was associated with a greater total blood lymphocyte count. There was an inverse association of total blood lymphocyte count with units of phlebotomy to achieve iron depletion, serum ferritin concentration, and with presence of the A*01-B*08 haplotype. CONCLUSION: We conclude that there is a significant inverse relationship of total blood lymphocyte counts and severity of iron overload in hemochromatosis probands with HFE C282Y homozygosity. The presence of the HLA-A*01 allele or the -B*08 allele was also associated with significantly lower total blood lymphocyte counts, whereas presence of the -B*14 allele was associated with significantly higher total blood lymphocyte counts. In univariate and multivariate analyses, total blood lymphocyte counts were significantly lower in probands with the HLA-A*01-B*08 haplotype than in probands without this haplotype

    Stress System Dynamics during “Life As It Is Lived”: An Integrative Single-Case Study on a Healthy Woman

    Get PDF
    Little is known about the dynamic characteristics of stress system activity during “life as it is lived”. Using as representative a study design as possible, this investigation sought to gain insights into this area. A healthy 25-year-old woman collected her entire urine over a period of 63 days in 12-h intervals (126 measurements) to determine cortisol and neopterin (immune activation marker) levels. In addition, she filled out questionnaires on emotional state and daily routine in 12-h intervals, and was interviewed weekly to identify emotionally negative and positive everyday incidents. Adjusted cross-correlational analyses revealed that stressful incidents were associated with cyclic response patterns in both urinary cortisol and urinary neopterin concentrations. Urinary cortisol levels first decreased 12–24 h after stressful incidents occurred (lag 1: −.178; p = 0.048) and then increased a total of 72–84 h later (lag 6: +.224; p = 0.013). Urinary neopterin levels first increased 0–12 h before the occurrence of stressful incidents (−lag 1: +.185; p = 0.040) and then decreased a total of 48–60 h following such stressors (lag 4: −.181; p = 0.044). Decreases in urinary neopterin levels were also found 24–36 and 48–60 h after increases in pensiveness (lag 2: −.215; p = 0.017) and depressiveness (lag 4: −.221; p = 0.014), respectively. Findings on emotionally positive incidents sharply contrasted with those dealing with negative experiences. Positive incidents were followed first by urinary cortisol concentration increases within 12 h (lag 0: +.290; p = 0.001) and then by decreases after a total of 60–72 h (lag 5: −.186; p = 0.039). Urinary neopterin levels first decreased 12–24 h before positive incidents occurred (−lag 2: −.233; p = 0.010) and then increased a total of 12–24 h following these incidents (lag 1: +.222; p = 0.014). As with previous investigations on patients with systemic lupus erythematosus (SLE), this study showed that stress system response can be considerably longer and more complex and differentiated than findings from conventional group studies have suggested. Further integrative single-case studies will need to be conducted in order to draw firm conclusions about stress system dynamics under real-life conditions

    Multi-Agent Exploration Inside Structural Collapses

    No full text
    corecore