130 research outputs found

    How to remedy the eta-problem of SUSY GUT hybrid inflation via vector backreaction

    Full text link
    It is shown that, in supergravity models of inflation where the gauge kinetic function of a gauge field is modulated by the inflaton, we can obtain a new inflationary attractor solution, in which the roll-over of the inflaton suffers additional impedance due to the vector field backreaction. As a result, directions of the scalar potential which, due to strong Kaehler corrections, become too steep and curved to normally support slow-roll inflation can now naturally do so. This solves the infamous eta-problem of inflation in supergravity and also keeps the spectral index of the curvature perturbation mildly red despite eta of order unity. This mechanism is applied to a model of hybrid inflation in supergravity with a generic Kaehler potential. The spectral index of the curvature perturbation is found to be 0.97 - 0.98, in excellent agreement with data. The gauge field can act as vector curvaton generating statistical anisotropy in the curvature perturbation. However, this anisotropy could be possibly observable only if the gauge coupling constant is unnaturally small.Comment: 10 pages, talk given at the International Workshop on Grand Unified Theories (GUT2012), Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan, March 15-17, 2012 (to appear in the proceedings

    The Standard-smooth Variant of Hybrid Inflation

    Full text link
    We consider the extension of the supersymmetric Pati-Salam model introduced in order to solve the b-quark mass problem in supersymmetric theories with Yukawa unification, universal boundary conditions and mu>0. This model naturally leads to the new shifted and new smooth hybrid inflation scenarios, which, however, yield, in minimal supergravity, too large values of the spectral index n_s. We show that this problem can also be resolved within the same model by a two-stage inflationary scenario based only on renormalizable superpotential interactions. The first stage is of the standard and the second of the new smooth hybrid type. The cosmological scales exit the horizon during the first stage of inflation and acceptable n_s's can be achieved by restricting the number of e-foldings of our present horizon during this inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by the second stage of inflation. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation so that their density in the present universe is utterly negligible.Comment: 10 pages including 1 figure, uses aipproc.cls, talk given at the BUE,CTP International Conference on Neutrino Physics in the LHC Era, Luxor, Egypt, 15-19 November 2009 (to appear in the proceedings

    New smooth hybrid inflation

    Full text link
    We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a non-minimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.Comment: 15 pages including 5 figures, uses Revtex, version to appear in PR

    New shifted hybrid inflation

    Full text link
    A new shifted hybrid inflationary scenario is introduced which, in contrast to the older one, relies only on renormalizable superpotential terms. This scenario is automatically realized in a concrete extension of the "minimal" supersymmetric Pati-Salam model which naturally leads to a moderate violation of Yukawa unification so that, for mu>0, the predicted b-quark mass is acceptable even with universal boundary conditions. It is shown that this extended model possesses a classically flat "shifted" trajectory which acquires a slope via one-loop radiative corrections and can be used as inflationary path. The constraints from the cosmic background explorer can be met with natural values of the relevant parameters. Also, there is no disastrous production of magnetic monopoles after inflation since the Pati-Salam gauge group is already broken on the "shifted" path. The relevant part of inflation takes place at values of the inflaton field which are not much smaller than the "reduced" Planck scale and, thus, supergravity corrections could easily invalidate inflation. It is, however, shown that inflation can be kept intact provided that an extra gauge singlet with a superheavy vacuum expectation value, which originates from D-terms, is introduced and a specific form of the Kaehler potential is used. Moreover, it is found that, although the supergravity corrections are sizable, the constraints from the cosmic background explorer can again be met by readjusting the values of the parameters which were obtained with global supersymmetry.Comment: 18 pages including 1 figure, uses JHEP3.cls, minor corrections, version to appear in JHE

    Standard-smooth hybrid inflation

    Full text link
    We consider the extended supersymmetric Pati-Salam model which, for mu>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity).Comment: 11 pages including 2 figures, uses Revtex, version to appear in Phys. Rev.

    Dissipative breathers in rf SQUID metamaterials

    Full text link
    The existence and stability of dissipative breathers in rf SQUID (Superconducting Quantum Interference Device) arrays is investigated numerically. In such arrays, the nonlinearity which is intrinsic to each SQUID, along with the weak magnetic coupling of each SQUID to its nearest neighbors, result in the formation of discrete breathers. We analyze several discrete breather excitations in rf SQUID arrays driven by alternating flux sources in the presence of losses. The delicate balance between internal power losses and input power, results in the formation of dissipative discrete breather (DDB) structures up to relatively large coupling parameters. It is shown that DDBs may locally alter the magnetic response of an rf SQUID array from paramagnetic to diamagnetic or vice versa.Comment: 5 pages, 4 figure
    • …
    corecore