21 research outputs found

    HoxA-11 and FOXO1A Cooperate to Regulate Decidual Prolactin Expression: Towards Inferring the Core Transcriptional Regulators of Decidual Genes

    Get PDF
    During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs) leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (−395 to −148 relative to the PRL transcriptional start site) of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization

    A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the Multiethnic Cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in animals and humans clearly indicate a role for prolactin (PRL) in breast epithelial proliferation, differentiation, and tumorigenesis. Prospective epidemiological studies have also shown that women with higher circulating PRL levels have an increase in risk of breast cancer, suggesting that variability in PRL may also be important in determining a woman's risk.</p> <p>Methods</p> <p>We evaluated genetic variation in the PRL and PRL receptor (PRLR) genes as predictors of plasma PRL levels and breast cancer risk among African-American, Native Hawaiian, Japanese-American, Latina, and White women in the Multiethnic Cohort Study (MEC). We selected single nucleotide polymorphisms (SNPs) from both the public (dbSNP) and private (Celera) databases to construct high density SNP maps that included up to 20 kilobases (kb) upstream of the transcription initiation site and 10 kb downstream of the last exon of each gene, for a total coverage of 59 kb in PRL and 210 kb in PRLR. We genotyped 80 SNPs in PRL and 173 SNPs in PRLR in a multiethnic panel of 349 unaffected subjects to characterize linkage disequilibrium (LD) and haplotype patterns. We sequenced the coding regions of PRL and PRLR in 95 advanced breast cancer cases (19 of each racial/ethnic group) to uncover putative functional variation. A total of 33 and 60 haplotype "tag" SNPs (tagSNPs) that allowed for high predictability (R<sub>h</sub><sup>2 </sup>≥ 0.70) of the common haplotypes in PRL and PRLR, respectively, were then genotyped in a multiethnic breast cancer case-control study of 1,615 invasive breast cancer cases and 1,962 controls in the MEC. We also assessed the association of common genetic variation with circulating PRL levels in 362 postmenopausal controls without a history of hormone therapy use at blood draw. Because of the large number of comparisons being performed we used a relatively stringent type I error criteria (p < 0.0005) for evaluating the significance of any single association to correct for performing approximately 100 independent tests, close to the number of tagSNPs genotyped for both genes.</p> <p>Results</p> <p>We observed no significant associations between PRL and PRLR haplotypes or individual SNPs in relation to breast cancer risk. A nominally significant association was noted between prolactin levels and a tagSNP (tagSNP 44, rs2244502) in intron 1 of PRL. This SNP showed approximately a 50% increase in levels between minor allele homozygotes vs. major allele homozygotes. However, this association was not significant (p = 0.002) using our type I error criteria to correct for multiple testing, nor was this SNP associated with breast cancer risk (p = 0.58).</p> <p>Conclusion</p> <p>In this comprehensive analysis covering 59 kb of the PRL locus and 210 kb of the PRLR locus, we found no significant association between common variation in these candidate genes and breast cancer risk or plasma PRL levels. The LD characterization of PRL and PRLR in this multiethnic population provide a framework for studying these genes in relation to other disease outcomes that have been associated with PRL, as well as for larger studies of plasma PRL levels.</p

    Novel expression of the stanniocalcin gene in fish

    No full text

    Dopamine-induced lymphoma cell death by inhibition of hormone release

    No full text
    Dopamine inhibits prolactin release from pituitary cells and seems to affect the release of several other hormones as well. We report here that dopamine may have similar effects on human B lymphoma cells leading to inhibition of production or release of endogenous factors required for cell viability and proliferation. Thus, addition of dopamine to serum-free cultures of Burkitt lymphoma cells (Raji, Namalwa, Daudi and Jijoye) resulted in rapid and extensive cell death while a myeloma cell line, SKO, appeared to be refractory to this treatment. The addition of FCS or supernatant from serum-free cultures of Raji or T24 bladder carcinoma cells could, to a variable degree, counteract the effect of dopamine, suggesting that dopamine acts by inhibiting the production of essential autocrine factors. When two of the hormones known to be under dopamine control, i.e. prolactin (PRL) and thyrotropin (TSH), were tested, they were able to prevent dopamine-induced cell death if combined with heparin. We further observed that the reducing agent 2-mercaptoethanol (2-ME), which is known to inhibit the binding of TSH to its receptor, displayed similar effects to those of dopamine and was strongly inhibitory for Burkitt lymphoma but not for myeloma cells. As expected from its blocking activity at the receptor level, the effect of 2-ME could not be reversed by adding exogenous factors. Contrary to its effect on B lymphoma cells, 2-ME is essential for growth of the murine T-cell lymphoma line CTLL. However, we show here that dopamine can fully compensate for 2-ME, suggesting that TSH or another factor under dopamine control is intimately involved in the regulation of T-cell growth. This study lends further support to the notion of an active interplay between the neuroendocrine and immune systems and emphasizes PRL and TSH as important regulators of lymphoid cell function. It also shows that these hormones may contribute to the autonomous growth pattern of B lymphoma cells and suggests a potential role for dopamine in the treatment of B-cell tumour
    corecore