145 research outputs found

    Influence of testing environment and loading rate on intervertebral disc compressive mechanics: An assessment of repeatability at three different laboratories

    Get PDF
    In vitro mechanical testing of intervertebral discs is crucial for basic science and pre-clinical testing. Generally, these tests aim to replicate in vivo conditions, but simplifications are necessary in specimen preparation and mechanical testing due to complexities in both structure and the loading conditions required to replicate in vivo conditions. There has been a growing interest in developing a consensus of testing protocols within the spine community to improve comparison of results between studies. The objective of this study was to perform axial compression experiments on bovine bone-disc-bone specimens at three institutions. No differences were observed between testing environment being air, with PBS soaked gauze, or a PBS bath (P > .206). A 100-fold increase in loading rate resulted in a small (2%) but significant increase in compressive mechanics (P < .017). A 7% difference in compressive stiffness between Labs B and C was eliminated when values were adjusted for test system compliance. Specimens tested at Lab A, however, were found to be stiffer than specimens from Lab B and C. Even after normalizing for disc geometry and adjusting for system compliance, an ∼35% difference was observed between UK based labs (B and C) and the USA based lab (A). Large differences in specimen stiffness may be due to genetic differences between breeds or in agricultural feed and use of growth hormones; highlighting significant challenges in comparing mechanics data across studies. This research provides a standardized test protocol for the comparison of spinal specimens and provides steps towards understanding how location and test set-up may affect biomechanical results

    Minimization of phonon-tunneling dissipation in mechanical resonators

    Get PDF
    Micro- and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. Their performance is in many cases limited by the deleterious effects of mechanical damping. Here, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the "phonon-tunneling" approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform the first rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunneling solver represents a major step towards accurate prediction of the mechanical quality factor.Comment: 12 pages, 4 figure

    Development of Genomic Resources for Pacific Herring through Targeted Transcriptome Pyrosequencing

    Get PDF
    Pacific herring (Clupea pallasii) support commercially and culturally important fisheries but have experienced significant additional pressure from a variety of anthropogenic and environmental sources. In order to provide genomic resources to facilitate organismal and population level research, high-throughput pyrosequencing (Roche 454) was carried out on transcriptome libraries from liver and testes samples taken in Prince William Sound, the Bering Sea, and the Gulf of Alaska. Over 40,000 contigs were identified with an average length of 728 bp. We describe an annotated transcriptome as well as a workflow for single nucleotide polymorphism (SNP) discovery and validation. A subset of 96 candidate SNPs chosen from 10,933 potential SNPs, were tested using a combination of Sanger sequencing and high-resolution melt-curve analysis. Five SNPs supported between-ocean-basin differentiation, while one SNP associated with immune function provided high differentiation between Prince William Sound and Kodiak Island within the Gulf of Alaska. These genomic resources provide a basis for environmental physiology studies and opportunities for marker development and subsequent population structure analysis

    Action planning and the timescale of evidence accumulation

    Get PDF
    Perceptual decisions are based on the temporal integration of sensory evidence for different states of the outside world. The timescale of this integration process varies widely across behavioral contexts and individuals, and it is diagnostic for the underlying neural mechanisms. In many situations, the decision-maker knows the required mapping between perceptual evidence and motor response (henceforth termed “sensory-motor contingency”) before decision formation. Here, the integrated evidence can be directly translated into a motor plan and, indeed, neural signatures of the integration process are evident as build-up activity in premotor brain regions. In other situations, however, the sensory-motor contingencies are unknown at the time of decision formation. We used behavioral psychophysics and computational modeling to test if knowledge about sensory-motor contingencies affects the timescale of perceptual evidence integration. We asked human observers to perform the same motion discrimination task, with or without trial-to-trial variations of the mapping between perceptual choice and motor response. When the mapping varied, it was either instructed before or after the stimulus presentation. We quantified the timescale of evidence integration under these different sensory-motor mapping conditions by means of two approaches. First, we analyzed subjects’ discrimination threshold as a function of stimulus duration. Second, we fitted a dynamical decision-making model to subjects’ choice behavior. The results from both approaches indicated that observers (i) integrated motion information for several hundred ms, (ii) used a shorter than optimal integration timescale, and (iii) used the same integration timescale under all sensory-motor mappings. We conclude that the mechanisms limiting the timescale of perceptual decisions are largely independent from long-term learning (under fixed mapping) or rapid acquisition (under variable mapping) of sensory-motor contingencies. This conclusion has implications for neurophysiological and neuroimaging studies of perceptual decision-making

    Enhanced genetic maps from family-based disease studies: population-specific comparisons

    Get PDF
    Abstract Background Accurate genetic maps are required for successful and efficient linkage mapping of disease genes. However, most available genome-wide genetic maps were built using only small collections of pedigrees, and therefore have large sampling errors. A large set of genetic studies genotyped by the NHLBI Mammalian Genotyping Service (MGS) provide appropriate data for generating more accurate maps. Results We collected a large sample of uncleaned genotype data for 461 markers generated by the MGS using the Weber screening sets 9 and 10. This collection includes genotypes for over 4,400 pedigrees containing over 17,000 genotyped individuals from different populations. We identified and cleaned numerous relationship and genotyping errors, as well as verified the marker orders. We used this dataset to test for population-specific genetic maps, and to re-estimate the genetic map distances with greater precision; standard errors for all intervals are provided. The map-interval sizes from the European (or European descent), Chinese, and Hispanic samples are in quite good agreement with each other. We found one map interval on chromosome 8p with a statistically significant size difference between the European and Chinese samples, and several map intervals with significant size differences between the African American and Chinese samples. When comparing Palauan with European samples, a statistically significant difference was detected at the telomeric region of chromosome 11p. Several significant differences were also identified between populations in chromosomal and genome lengths. Conclusions Our new population-specific screening set maps can be used to improve the accuracy of disease-mapping studies. As a result of the large sample size, the average length of the 95% confidence interval (CI) for a 10 cM map interval is only 2.4 cM, which is considerably smaller than on previously published maps.http://deepblue.lib.umich.edu/bitstream/2027.42/112826/1/12881_2010_Article_748.pd

    Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.</p> <p>Methods</p> <p>Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.</p> <p>Results</p> <p>Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.</p> <p>Conclusion</p> <p>FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth <it>in vitro </it>and <it>in vivo </it>and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.</p

    Combinatorial Mismatch Scan (CMS) for loci associated with dementia in the Amish

    Get PDF
    BACKGROUND: Population heterogeneity may be a significant confounding factor hampering detection and verification of late onset Alzheimer's disease (LOAD) susceptibility genes. The Amish communities located in Indiana and Ohio are relatively isolated populations that may have increased power to detect disease susceptibility genes. METHODS: We recently performed a genome scan of dementia in this population that detected several potential loci. However, analyses of these data are complicated by the highly consanguineous nature of these Amish pedigrees. Therefore we applied the Combinatorial Mismatch Scanning (CMS) method that compares identity by state (IBS) (under the presumption of identity by descent (IBD)) sharing in distantly related individuals from such populations where standard linkage and association analyses are difficult to implement. CMS compares allele sharing between individuals in affected and unaffected groups from founder populations. Comparisons between cases and controls were done using two Fisher's exact tests, one testing for excess in IBS allele frequency and the other testing for excess in IBS genotype frequency for 407 microsatellite markers. RESULTS: In all, 13 dementia cases and 14 normal controls were identified who were not related at least through the grandparental generation. The examination of allele frequencies identified 24 markers (6%) nominally (p ≤ 0.05) associated with dementia; the most interesting (empiric p ≤ 0.005) markers were D3S1262, D5S211, and D19S1165. The examination of genotype frequencies identified 21 markers (5%) nominally (p ≤ 0.05) associated with dementia; the most significant markers were both located on chromosome 5 (D5S1480 and D5S211). Notably, one of these markers (D5S211) demonstrated differences (empiric p ≤ 0.005) under both tests. CONCLUSION: Our results provide the initial groundwork for identifying genes involved in late-onset Alzheimer's disease within the Amish community. Genes identified within this isolated population will likely play a role in a subset of late-onset AD cases across more general populations. Regions highlighted by markers demonstrating suggestive allelic and/or genotypic differences will be the focus of more detailed examination to characterize their involvement in dementia

    Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria

    Get PDF
    Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration. Inflammatory responses are triggered in part by bioactive parasite products such as hemozoin and infected red blood cell-derived extracellular vesicles (iRBC-derived EVs). Here we demonstrate that such EVs contain functional miRNA-Argonaute 2 complexes that are derived from the host RBC. Moreover, we show that EVs are efficiently internalized by endothelial cells, where the miRNA-Argonaute 2 complexes modulate target gene expression and barrier properties. Altogether, these findings provide a mechanistic link between EVs and vascular dysfunction during malaria infection

    Neural and behavioral traces of error awareness

    Get PDF
    Monitoring for errors and behavioral adjustments after errors are essential for daily life. A question that has not been addressed systematically yet, is whether consciously perceived errors lead to different behavioral adjustments compared to unperceived errors. Our goal was to develop a task that would enable us to study different commonly observed neural correlates of error processing and post-error adjustments in their relation to error awareness and accuracy confidence in a single experiment. We assessed performance in a new number judgement error awareness task in 70 participants. We used multiple, robust, single-trial EEG regressions to investigate the link between neural correlates of error processing (e.g., error-related negativity (ERN) and error positivity (Pe)) and error awareness. We found that only aware errors had a slowing effect on reaction times in consecutive trials, but this slowing was not accompanied by post-error increases in accuracy. On a neural level, error awareness and confidence had a modulating effect on both the ERN and Pe, whereby the Pe was most predictive of participants’ error awareness. Additionally, we found partial support for a mediating role of error awareness on the coupling between the ERN and behavioral adjustments in the following trial. Our results corroborate previous findings that show both an ERN/Pe and a post-error behavioral adaptation modulation by error awareness. This suggests that conscious error perception can support meta-control processes balancing the recruitment of proactive and reactive control. Furthermore, this study strengthens the role of the Pe as a robust neural index of error awareness
    corecore