12 research outputs found

    Toxic effects of Pb2+ on the growth and mineral nutrition of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana)

    Get PDF
    Although grasses are commonly used to revegetate sites contaminated with lead (Pb), little is known regarding the Pb-tolerance of many of these species. Using dilute solution culture to mimic the soil solution, the growth of signal grass (Brachiaria decumbens Stapf cv. Basilisk) and Rhodes grass (Chloris gayana Kunth cv. Pioneer) was related to the mean activity of Pb2+ {Pb2+} in solution. There was a 50% reduction in fresh mass of signal grass shoots at 5 mu M {Pb2+} and at 3 mu M {Pb2+} for the roots. Rhodes grass was considerably more sensitive to Pb in solution, with shoot and root fresh mass being reduced by 50% at 0.5 mu M {Pb2+}. The higher tolerance of signal grass to Pb appeared to result from the internal detoxification of Pb, rather than from the exclusion of Pb from the root. At toxic {Pb2+}, an interveinal chlorosis developed in the shoots of signal grass (possibly a Pb-induced Mn deficiency), whilst in Rhodes grass, Pb2+ caused a bending of the root tips and the formation of a swelling immediately behind some of the root apices. Root hair growth did not appear to be reduced by Pb2+ in solution, being prolific at all {Pb2+} in both species

    Mg induced Ca deficiency under alkaline conditions

    No full text
    Little is known about Mg induced Ca deficiency in alkaline conditions, and the relationship between Mg induced Ca deficiency and Na induced Ca deficiency. Dilute nutrient solutions (dominated by Mg) were used to investigate the effect of Ca activity ratio (CAR) on the growth of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald). At pH 9.0, root growth was reduced below a critical CAR of 0.050 (corresponding to 90 % relative root length). Root growth was found to be limited more in Mg solutions than had been previously observed for Na solutions. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for both Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present

    Use of inorganic and organic wastes for in situ immobilisation of Pb and Zn in a contaminated alkaline soil

    No full text
    This study aims to examine whether addition of immobilising agents to a sandy, alkaline (pH = 8.1) soil, which had been contaminated with Pb and Zn by airborne particles from a Pb/Zn smelter, would substantially reduce metal bioavailability.The effectiveness of five waste materials (blast furnace (BF) slag, alum water treatment (WT) sludge, red mud, sugar mill mud and green waste compost) as metal immobilising agents was evaluated by incubating them with a contaminated soil for a period of 12 months at rates of 5% and 10% (w/w), after which, Rhodes grass was grown in the soils in a greenhouse study.Additions of WT sludge, BF slag and red mud reduced CaCl(2), CH(3)COOH, HCl and EDTA-extractable Zn but compost and mill mud had no appreciable immobilising effects. Additions of all amendments reduced levels of CaCl(2), CH(3)COOH and HCl-extractable Pb although concentrations of EDTA-extractable Pb remained unchanged. A sequential extraction procedure showed that additions of mill mud and compost increased the percentage of total Pb and Zn present in the oxidisable fraction whilst additions of the other materials increased the percentage present in the residual fraction. Rhodes grass yields were promoted greatly by additions of red mud, compost and particularly mill mud, and yields were negatively correlated with tissue Pb concentrations and extractable Pb.Red mud was the most effective material for lowering extractable Pb and Zn levels simultaneously while mill mud and compost were notably effective for Pb. A field evaluation in the study area is justified

    A comparison of the properties of manufactured soils produced from composting municipal green waste alone or with poultry manure or grease trap/septage waste

    No full text
    Manufactured soil for landscaping purposes was produced by composting for 6 weeks (1) municipal green waste alone, (2) green waste amended with 25% v/v poultry manure, or (3) green waste immersed in, and then removed from, a mixture of liquid grease trap waste/septage. Composting temperatures increased most rapidly and reached highest values (78°C) in the grease trap/septage-amended green waste. In comparison with green waste alone, addition of poultry manure prolonged the period of elevated temperatures and increased the maximum temperature attained from 52°C to 61°C. Following composting, each of the materials was split into (1) 100% compost, (2) 80% compost plus 20% v/v soil, and (3) 70% compost plus 20% soil plus 10% coal fly ash. Addition of poultry manure or grease trap/septage to green waste prior to composting increased bulk density and reduced total porosity of the composted product. Addition of soil, or soil and ash, to composts increased bulk density, reduced total porosity, decreased percentage macropores, and increased percentage mesopores and available water-holding capacity. Bicarbonate-extractable P, exchangeable NH and NO, electrical conductivity (EC), soluble C, soluble C as a percentage of organic C, basal respiration, and metabolic quotient were all markedly greater in the grease trap/septage-amended than poultry manure-amended or green waste alone treatments. Values for extractable P and EC were considered large enough to be damaging to plant growth and germination index (GI) of watercress was less than 60% for all grease trap/septage composts. Extractable P and EC were also high, and GI was 100%

    Toxicity of Cd to signal grass (Brachiaria decumbens Stapf.) and Rhodes grass (Chloris gayana Kunth.)

    No full text
    Given that Cd accumulates within plant tissues to levels that are toxic to animals, it is necessary to understand the role of plants in highly Cd-contaminated systems and their subsequent impact on the health of animals. A solution culture experiment was conducted to elucidate the effects of increasing Cd(2+) activity ({Cd(2+)}) on growth of Rhodes grass (Chloris gayana Kunth.) and signal grass (Brachiaria decumbens Stapf.). The shoot and root fresh mass of both Rhodes grass and signal grass was reduced by 50% at ca. 0.5 A mu M {Cd(2+)}. Elevated {Cd(2+)} resulted in a significant decrease in the tissue Mn concentration for both the shoots and roots, and caused a chlorosis of the veins in the shoots. Root hair growth was prolific even at high {Cd(2+)}, thus root hair growth appeared to be less sensitive to elevated Cd than was root growth per se. The critical shoot tissue concentrations (50% reduction in growth), 230 A mu g g(-1) for Rhodes grass and 80 A mu g g(-1) for signal grass, exceeded the maximum level of Cd tolerated in the diet of animals (ca. 5 A mu g g(-1)). When assessing the risk associated with the revegetation of Cd-contaminated sites with Rhodes grass or signal grass, careful consideration must be given, therefore, to the transfer of toxic concentrations of Cd to grazing animals and through the wider food chain
    corecore