29 research outputs found

    Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK) and a locking compression plate (LCP) which could sustain duration for up to 6 month with an acceptable low complication rate.</p> <p>Methods</p> <p>A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals.</p> <p>Results</p> <p>The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature.</p> <p>Conclusions</p> <p>This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.</p

    Indications for implant removal after fracture healing: a review of the literature

    Get PDF
    Introduction: The aim of this review was to collect and summarize published data on the indications for implant removal after fracture healing, since these are not well defined and guidelines hardly exist. Methods: A literature search was performed. Results: Though there are several presumed benefits of implant removal, such as functional improvement and pain relief, the surgical procedure can be very challenging and may lead to complications or even worsening of the complaints. Research has focused on the safety of metal implants (e.g., risk of corrosion, allergy, and carcinogenesis). For these reasons, implants have been removed routinely for decades. Along with the introduction of titanium alloy implants, the need for implant removal became a subject of debate in view of potential (dis)advantages since, in general, implants made of titanium alloys are more difficult to remove. Currently, the main indications for removal from both the upper and lower extremity are mostly 'relative' and patient-driven, such as pain, prominent material, or simply the request for removal. True medical indications like infection or intra-articular material are minor reasons. Conclusion: This review illustrates the great variety of view points in the literature, with large differences in opinions and practices about the indications for implant removal after fracture healing. Since some studies have described asymptomatic patients developing complaints after removal, the general advice nowadays is to remove implants after fracture healing only in symptomatic patients and after a proper informed consent. Well-designed prospective studies on this subject are urgently needed in order to form guidelines based on scientific evidence

    Biomechanical in vitro assessment of fixed angle plating using a new concept of locking for the treatment of osteoporotic proximal humerus fractures

    No full text
    Locked plating attempts to improve mechanical stability via better anchorage of the screws in the bone. In 22 paired osteoporotic humeri an AO/ASIF 11-B 1 fracture was created. Locked and conventional plating using the same device of the latest generation was performed. Torsional loading around three axes (x = varus/valgus, y = flexion/extension, z = axial rotation) with an increasing moment (2, 3.5, 5 and 7.5 N·m) was applied. Interfragmentary motion within the locked group was lower for all three axes with higher cumulative survival rates (p < 0.05). The typical mode of failure was loss of fixation in the humeral head occurring earlier in the conventional group. The locking mechanism investigated provides more ultimate strength in an osteoporotic proximal humerus fracture model. Correlation with BMD suggests that this device may especially be suitable for use in osteoporotic bone
    corecore