473 research outputs found

    The five dimensions of B cell tolerance

    Full text link
    B cell tolerance has been generally understood to be an acquired property of the immune system that governs antibody specificity in ways that avoid auto‐toxicity. As useful as this understanding has proved, it fails to fully explain the existence of auto‐reactive specificities in healthy individuals and contribution these may have to health. Mechanisms underlying B cell tolerance are considered to select a clonal repertoire that generates a collection of antibodies that do not bind self, ie tolerance operates more or less in three dimensions that largely spare autologous cells and antigens. Yet, most B lymphocytes in humans and probably in other vertebrates are auto‐reactive and absence of these auto‐reactive B cells is associated with disease. We suggest that auto‐reactivity can be embodied by extending the concept of tolerance by two further dimensions, one of time and circumstance and one that allows healthy cells to actively resist injury. In this novel concept, macromolecular recognition by the B cell receptor leading to deletion, anergy, receptor editing or B cell activation is extended by taking account of the time of development of normal immune responses (4th dimension) and the accommodation (or tolerance) of normal cells to bound antibody, activation of complement, and interaction with inflammatory cells (fifth dimension). We discuss how these dimensions contribute to understanding B cell biology in health or disease.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153034/1/imr12813.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153034/2/imr12813_am.pd

    Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren's Contracture

    Get PDF
    Background: Dupuytren's contracture (DC) is a fibroproliferative disorder characterized by the progressive development of a scar-like collagen-rich cord that affects the palmar fascia of the hand and leads to digital flexion contractures. DC is most commonly treated by surgical resection of the diseased tissue, but has a high reported recurrence rate ranging from 27% to 80%. We sought to determine if the transcriptomic profiles of fibroblasts derived from DC-affected palmar fascia, adjacent phenotypically normal palmar fascia, and non-DC palmar fascial tissues might provide mechanistic clues to understanding the puzzle of disease predisposition and recurrence in DC. Methods. To achieve this, total RNA was obtained from fibroblasts derived from primary DC-affected palmar fascia, patient-matched unaffected palmar fascia, and palmar fascia from non-DC patients undergoing carpal tunnel release (6 patients in each group). These cells were grown on a type-1 collagen substrate (to better mimic their in vivo environments). Microarray analyses were subsequently performed using Illumina BeadChip arrays to compare the transcriptomic profiles of these three cell populations. Data were analyzed using Significance Analysis of Microarrays (SAM v3.02), hierarchical clustering, concordance mapping and Venn diagram. Results: We found that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected fascia of DC patients exhibited a much greater overlap than fibroblasts derived from the palmar fascia of patients undergoing carpal tunnel release. Quantitative real time RT-PCR confirmed the differential expression of select genes validating the microarray data analyses. These data are consistent with the hypothesis that predisposition and recurrence in DC may stem, at least in part, from intrinsic similarities in the basal gene expression of diseased and phenotypically unaffected palmar fascia fibroblasts. These data also demonstrate that a collagen-rich environment differentially alters gene expression in these cells. In addition, Ingenuity pathway analysis of the specific biological pathways that differentiate DC-derived cells from carpal tunnel-derived cells has identified the potential involvement of microRNAs in this fibroproliferative disorder. Conclusions: These data show that the transcriptomic profiles of DC-disease fibroblasts and fibroblasts from unaffected palmar fascia in DC patients are highly similar, and differ significantly from the transcriptomic profiles of fibroblasts from the palmar fascia of patients undergoing carpal tunnel release. © 2012 Satish et al; licensee BioMed Central Ltd

    Measurement of Exclusive B Decays to Final States Containing a Charmed Baryon

    Get PDF
    Using data collected by the CLEO detector in the Upsilon(4S) region, we report new measurements of the exclusive decays of B mesons into final states of the type Lambda_c^+ p-bar n(pi), where n=0,1,2,3. We find signals in modes with one, two and three pions and an upper limit for the two body decay Lambda_c^+ pbar. We also make the first measurements of exclusive decays of B mesons to Sigma_c p-bar n(pi), where n=0,1,2. We find signals in modes with one and two pions and an upper limit for the two body decay Sigma_c p-bar. Measurements of these modes shed light on the mechanisms involved in B decays to baryons.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Measurement of the Masses and Widths of the Sigma_c^++ and Sigma_c^0 Charmed Baryons

    Full text link
    Using data recorded by the CLEO II and CLEO II.V detector configurations at CESR, we report new measurements of the masses of the Sigma_c^{++} and Sigma_c^0 charmed baryons, and the first measurements of their intrinsic widths. We find M(Sigma_c^{++}) - M(Lambda_c^+) = 167.4 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^{++}) = 2.3 +- 0.2 +- 0.3 MeV, and M(Sigma_c^0) - M(Lambda_c^+) = 167.2 +- 0.1 +- 0.2 MeV, Gamma(Sigma_c^0) = 2.5 +- 0.2 +- 0.3 MeV, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PRD, Rapid Communications. Reference [13] correcte

    Evidence for the Decay D0K+ππ+πD^0\to K^+ \pi^-\pi^+\pi^-

    Full text link
    We present a search for the ``wrong-sign'' decay D0 -> K+ pi- pi+ pi- using 9 fb-1 of e+e- collisions on and just below the Upsilon(4S) resonance. This decay can occur either through a doubly Cabibbo-suppressed process or through mixing to a D0bar followed by a Cabibbo-favored process. Our result for the time-integrated wrong-sign rate relative to the decay D0 -> K- pi+ pi- pi+ is (0.0041 +0.0012-0.0011(stat.) +-0.0004(syst.))x(1.07 +-0.10)(phase space), which has a statistical significance of 3.9 standard deviations.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays

    Full text link
    We have measured the first and second moments of the hadronic mass-squared distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 - M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170 GeV^4, where M_D[Bar] is the spin-averaged D meson mass. From that first moment and the first moment of the photon energy spectrum in b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| = 0.0404 +- 0.0013.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Observation of Exclusive barB --> D(*) K*- Decays

    Full text link
    We report the first observation of the exclusive decays \bar B\to D^{(*)}K^{*-}, using 9.66 x 10^{6} B\bar{B} pairs collected at the \Upsilon(4S) with the CLEO detector. We measure the following branching fractions: {\cal B}(B^- -> D^0 K^{*-})=(6.1 +- 1.6 +-1.7)x10^{-4}, {\cal B}(\bar{B^0} -> D^+K^{*-})=(3.7 +- 1.5 +- 1.0) x 10^{-4}, {\cal B}(\bar{B^0} -> D^{*+}K^{*-})=(3.8 +- 1.3 +- 0.8) x 10^{-4} and {\cal B}(B^- --> D^{*0} K^{*-})=(7.7 +- 2.2 +- 2.6) x 10^{-4}. The \bar B ->D^*K^{*-} branching ratios are the averages of those corresponding to the 00 and 11 helicity states. The errors shown are statistical and systematic, respectively.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, Published in Phys.Rev.Lett.88:101803,200

    Proteoglycan-4 Regulates Fibroblast to Myofibroblast Transition and Expression of Fibrotic Genes in the Synovium

    Get PDF
    Background: Synovial tissue fibrosis is common in advanced OA with features including the presence of stress fiber-positive myofibroblasts and deposition of cross-linked collagen type-I. Proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and is a major component of synovial fluid. PRG4 is a ligand of the CD44 receptor. Our objective was to examine the role of PRG4-CD44 interaction in regulating synovial tissue fibrosis in vitro and in vivo. Methods: OA synoviocytes were treated with TGF-β ± PRG4 for 24h and α-SMA content was determined using immunofluorescence. Rhodamine-labeled rhPRG4 was incubated with OA synoviocytes ± anti-CD44 or isotype control antibodies and cellular uptake of rhPRG4 was determined following a 30-min incubation and α-SMA expression following a 24-h incubation. HEK-TGF-β cells were treated with TGF-β ± rhPRG4 and Smad3 phosphorylation was determined using immunofluorescence and TGF-β/Smad pathway activation was determined colorimetrically. We probed for stress fibers and focal adhesions (FAs) in TGF-β-treated murine fibroblasts and fibroblast migration was quantified ± rhPRG4. Synovial expression of fibrotic markers: α-SMA, collagen type-I, and PLOD2 in Prg4 gene-trap (Prg4GT) and recombined Prg4GTR animals were studied at 2 and 9 months of age. Synovial expression of α-SMA and PLOD2 was determined in 2-month-old Prg4GT/GT&Cd44−/− and Prg4GTR/GTR&Cd44−/− animals. Results: PRG4 reduced α-SMA content in OA synoviocytes (p \u3c 0.001). rhPRG4 was internalized by OA synoviocytes via CD44 and CD44 neutralization attenuated rhPRG4’s antifibrotic effect (p \u3c 0.05). rhPRG4 reduced pSmad3 signal in HEKTGF- β cells (p \u3c 0.001) and TGF-β/Smad pathway activation (p \u3c 0.001). rhPRG4 reduced the number of stress fiberpositive myofibroblasts, FAs mean size, and cell migration in TGF-β-treated NIH3T3 fibroblasts (p \u3c 0.05). rhPRG4 inhibited fibroblast migration in a macrophage and fibroblast co-culture model without altering active or total TGF-β levels. Synovial tissues of 9-month-old Prg4GT/GT animals had higher α-SMA, collagen type-I, and PLOD2 (p \u3c 0.001) content and Prg4 re-expression reduced these markers (p \u3c 0.01). Prg4 re-expression also reduced α-SMA and PLOD2 staining in CD44-deficient mice. Conclusion: PRG4 is an endogenous antifibrotic modulator in the joint and its effect on myofibroblast formation is partially mediated by CD44, but CD44 is not required to demonstrate an antifibrotic effect in vivo

    Observation of the Ωc0\Omega_{c}^{0} Charmed Baryon at CLEO

    Full text link
    The CLEO experiment at the CESR collider has used 13.7 fb1^{-1} of data to search for the production of the Ωc0\Omega_c^0 (css-ground state) in e+ee^{+}e^{-} collisions at s10.6\sqrt{s} \simeq 10.6 {\rm GeV}. The modes used to study the Ωc0\Omega_c^0 are Ωπ+\Omega^- \pi^+, Ωπ+π0\Omega^- \pi^+ \pi^0, ΞKpi+π+\Xi^- K^- pi^+ \pi^+, Ξ0Kpi+\Xi^0 K^- pi^+, and Ωπ+ππ+\Omega^- \pi^+ \pi^- \pi^+. We observe a signal of 40.4±\pm9.0(stat) events at a mass of 2694.6±\pm2.6(stat)±\pm1.9(syst) {\rm MeV/c2c^2}, for all modes combined.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore