24 research outputs found

    Mapping the Relationship Among Political Ideology, CSR Mindset, and CSR Strategy: A Contingency Perspective Applied to Chinese Managers

    Get PDF
    The literature on antecedents of corporate social responsibility (CSR) strategies of firms has been predominately content driven. Informed by the managerial sense-making process perspective, we develop a contingency theoretical framework explaining how political ideology of managers affects the choice of CSR strategy for their firms through their CSR mindset. We also explain to what extent the outcome of this process is shaped by the firm’s internal institutional arrangements and external factors impacting on the firm. We develop and test several hypotheses using data collected from 129 Chinese managers. The results show that managers with a stronger socialist ideology are likely to develop a mindset favouring CSR, which induces the adoption of a proactive CSR strategy. The CSR mindset mediates the link between socialist ideology and CSR strategy. The strength of the relationship between the CSR mindset and the choice of CSR strategy is moderated by customer response to CSR, industry competition, the role of government, and CSR-related managerial incentives

    Fracturing in Dry and Saturated Porous Media

    No full text
    It is now generally recognized that mode I fracturing in saturated geomaterials is a stepwise process. This is true both for mechanical loading and for pressure induced fracturing. Evidence comes from geophysics, from unconventional hydrocarbon extraction, and from experiments. Despite the evidence only very few numerical models capture this behavior. From our numerical experiments, both with a model based on Standard Galerkin Finite Elements in conjunction with a cohesive fracture model, and with a truss lattice model in combination with Monte Carlo simulations, it appears that already in dry geomaterials under mechanical loading the fracturing process is time discontinuous. In a two-phase fracture context, in case of mechanical loading, the fluid not only follows the fate of the solid phase material and gives rise to pressure peaks at the fracturing event, but it also influences this event. In case of pressure induced fracture clearly pressure peaks appear too but are of opposite sign: we observe pressure drops at fracturing. In mode II fracturing, the behavior is brittle while in mixed mode there appears a combination of pressure rises and drops
    corecore