4 research outputs found

    Mathematical modeling of an aqueous film coating process in a Bohle Lab-Coater, Part 1: Development of the model

    No full text
    The purpose of this study was to develop a model to predict (1) air and product temperatures, (2) product moisture, and (3) air humidity during an aqueous coating process using a Bohle Lab-Coater. Because of the geometrical properties and the airflow, the drum of the Bohle Lab-Coater can in principle be divided into 2 zones of equal size—the drying and the spraying zones. For each zone, 4 balance equations could be set up describing the change of the air humidity, the product moisture, the enthalpy of the air, and the enthalpy of the product in each zone. For this purpose, knowledge regarding heat and mass transfer and also the motion of the tablets in drums was used. Based on the considerations of the heat and mass transfer, a set of first-order coupled ordinary differential equations (ODEs) was developed. This set of ODEs can be solved numerically. In this part, the development of the model is described in detail, whereas the application of the model can be found in part 2

    Scale-up of a pan-coating process

    No full text
    The purpose of this work was to develop a practical scale-up model for a solvent-based pan-coating process. Practical scale-up rules to determine the key parameters (pan load, pan speed, spray rate, air flow) required to control the process are proposed. The proposed scale-up rules are based on a macroscopic evaluation of the coating process. Implementation of these rules does not require complex experimentation or prediction of model parameters. The proposed scale-up rules were tested by conducting coating scale-up and scale-down experiments on 24-inch and 52-inch Vector Hi-coaters. The data demonstrate that using these rules led to similar cumulative drug release profiles (f2≫50; and P Analysis of Variance [PANOVA]≫0.05 for cumulative percentage of drug released after 12 hours [Cum 12] from tablets made at 24- and 52-inch scales. Membrane characteristics such as opacity and roughness were also similar across the 2 scales. The effects of the key process variables on coat weight uniformity and membrane characteristics were also studied. Pan speed was found to be the most significant factor related to coating uniformity. Spray droplet size was found to affect the membrane roughness significantly, whereas opacity was affected by the drying capacity
    corecore