12 research outputs found

    The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports

    Get PDF
    Proximal 6q (6q11-q15) deletions are extremely rare and little is known about their phenotypic consequences. Since parents and caregivers now use social media to seek information on rare disorders, the Chromosome 6 Project has successfully collaborated with a Facebook group to collect data on individuals worldwide. Here we describe a cohort of 20 newly identified individuals and 25 literature cases with a proximal 6q deletion. Microarray results and phenotype data were reported directly by parents via a multilingual online questionnaire. This led to phenotype descriptions for five subregions of proximal 6q deletions; comparing the subgroups revealed that 6q11q14.1 deletions presented less severe clinical characteristics than 6q14.2q15 deletions. Gastroesophageal reflux, tracheo/laryngo/bronchomalacia, congenital heart defects, cerebral defects, seizures, and vision and respiratory problems were predominant in those with 6q14.2q15 deletions. Problems related to connective tissue (hypermobility, hernias and foot deformities) were predominantly seen in deletions including the COL12A1 gene (6q13). Congenital heart defects could be linked to deletions of MAP3K7 (6q15) or TBX18 (6q14.3). We further discuss the role of ten genes known or assumed to be related to developmental delay and/or autism (BAI3, RIMS1, KCNQ5, HTR1B, PHIP, SYNCRIP, HTR1E, ZNF292, AKIRIN2 and EPHA7). The most influential gene on the neurodevelopmental phenotype seems to be SYNCRIP (6q14.3), while deletions that include more than two of these genes led to more severe developmental delay. We demonstrate that approaching individuals via social media and collecting data directly from parents is a successful strategy, resulting in better information to counsel families

    Biallelic and monoallelic variants in PLXNA1 are implicated in a novel neurodevelopmental disorder with variable cerebral and eye anomalies.

    Get PDF
    PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect
    corecore