12 research outputs found

    Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study

    Get PDF
    Objective: Measurement of central-to-toe temperature difference has been advocated as an index of severity of shock and as a guide for circulatory therapy in critically ill patients. However, septic shock, in contrast to other forms of shock, is associated with a distributive malfunction resulting in a disparity between vascular compartments. Although this disparity has been established between systemic and microcirculatory parameters, it is unclear whether such disparity exists between skin perfusion and microcirculation. To test this hypothesis of disparity, we simultaneously measured parameters of the two vascular compartments, in the early phase of sepsis. Design: Prospective observational study in patients with severe sepsis/septic shock in the first 6 h of ICU admission. Simultaneous measurements of central-to-toe temperature difference and sublingual microcirculatory orthogonal polarization spectral imaging, together with parameters of systemic hemodynamics. Setting: 22 bed mixed-ICU in a tertiary teaching hospital. Patients: 35 consecutive patients in a 12-month period. Measurements and results: In 35 septic patients and a median APACHE II score of 20, no correlation between central-to-toe temperature gradient and microvascular flow index was observed (r(s) =-0.08, p = 0.65). Also no significant correlation between temperature gradient/microvascular flow index and systemic hemodynamic parameters could be demonstrated. Conclusions: During the early phase of resuscitated severe sepsis and septic shock there appears to be no correlation between sublingual microcirculatory alterations and the central-to-toe temperature difference. This finding adds to the concept of a dispersive nature of blood flow under conditions of sepsis between microcirculatory and systemic hemodynamic

    Thermal provocation to evaluate microvascular reactivity in human skin

    No full text
    With increased interest in predictive medicine, development of a relatively noninvasive technique that can improve prediction of major clinical outcomes has gained considerable attention. Current tests that are the target of critical evaluation, such as flow-mediated vasodilation of the brachial artery and pulse-wave velocity, are specific to the larger conduit vessels. However, evidence is mounting that functional changes in the microcirculation may be an early sign of globalized microvascular dysfunction. Thus development of a test of microvascular reactivity that could be used to evaluate cardiovascular risk or response to treatment is an exciting area of innovation. This mini-review is focused on tests of microvascular reactivity to thermal stimuli in the cutaneous circulation. The skin may prove to be an ideal site for evaluation of microvascular dysfunction due to its ease of access and growing evidence that changes in skin vascular reactivity may precede overt clinical signs of disease. Evaluation of the skin blood flow response to locally applied heat has already demonstrated prognostic utility, and the response to local cooling holds promise in patients in whom cutaneous disorders are present. Whether either of these tests can be used to predict cardiovascular morbidity or mortality in a clinical setting requires further evaluation
    corecore