4 research outputs found

    The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy

    Get PDF
    Purpose Laminectomy is a standard surgical procedure for elderly patients with symptomatic degenerative lumbar stenosis. The procedure aims at decompression of the affected nerves, but it also causes a reduction of spinal shear strength and shear stiffness. The magnitude of this reduction and the influence of bone mineral density (BMD) and disc degeneration are unknown. We studied the influence of laminectomy, BMD, and disc degeneration on shear force to failure (SFF) and shear stiffness (SS). Methods Ten human cadaveric lumbar spines were obtained (mean age 72.1 years, range 53-89 years). Laminectomy was performed either on L2 or L4, equally divided within the group of ten spines. BMD was assessed by dual X-ray absorptiometry (DXA). Low BMD was defined as a BMD value below the median. Intervertebral discs were assessed for degeneration by MRI (Pfirrmann) and scaled in mild and severe degeneration groups. Motion segments L2-L3 and L4-L5 were isolated from each spine. SFF and SS were measured, while loading simultaneously with 1,600 N axial compression. Results Low BMD had a significant negative effect on SFF. In addition, a significant interaction between low BMD and laminectomy was found. In the high BMD group, SFF was 2,482 N (range 1,678-3,284) and decreased to 1,371 N (range 940-1,886) after laminectomy. In the low BMD group, SFF was 1,339 N (range 909-1,628) and decreased to 761 N (range 561-1,221). Disc degeneration did not affect SFF, nor did it interact with laminectomy. Neither low BMD nor the interaction of low BMD and laminectomy did affect SS. Degeneration and its interaction with laminectomy did not significantly affect SS. Conclusions In conclusion, low BMD significantly decreased SFF before and after lumbar laminectomy. Therefore, DXA assessment may be an important asset to preoperative screening. Lumbar disc degeneration did not affect shear properties of lumbar segments before or after laminectomy. © 2012 Springer-Verlag

    Anthropogenic Development Drives Species to Be Endangered: Capitalism and the Decline of Species

    No full text
    Green criminologists have extensively studied crimes against non-human species. Importantly, a great deal of this research has focused on case studies of poaching and the illegal trade in wildlife. What is missing from that literature is a systematic analysis of structural factors that threaten non-human species. As a result, we use the capitalist treadmill of production literature to provide a systematic analysis of crimes/harms committed against non-human species. We do this through a discussion of capitalism during the current period of Anthropocene extinction. In the case of the United States we illustrate the general state of species endangerment with reviews of the International Union of Conservation of Nature’s “Red List” of threatened species and additional data on species endangerment from the US Wildlife and Fish Service. The data illustrate the extent of the harm that structural factors may cause to non-human animals. We conclude with suggestions for future work on species decline that focuses on structural factors
    corecore