11 research outputs found
Biodegradable Block Copolymers, Star-Shaped Polymers, and Networks Via Ring-Expansion Polymerization
Structure and dynamics in poly(L-lactide) copolymer networks
Poly(L-lactide) networks (PmLA) hydrophilized with different amounts of 2-hydroxyethyl acrylate (HEA) were investigated by dielectric relaxation spectroscopy, thermally stimulated depolarization currents, and differential scanning calorimetry. The incorporation of HEA units in the PmLA network, with the aim of modulating the water sorption capacity of the system, results in a material with a complex behavior. The system consists of phase-separated microdomains richer in one or the other comonomers that constitute the network. Initially, the addition of smalls amount of HEA units in the network gives rise to a one-phase, two-component system; however, when the amount of HEA in the system increases, a new phase (HEA-rich one) is formed containing some mLA chains that modify the main relaxation mode of these domains and the local dynamics of the system. The structure of the system has been analyzed by comparing the relaxational modes in the PmLA and PHEA homonetworks with those in the copolymer networks
The Lin28/let-7 axis regulates glucose metabolism.
The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating-metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, them TOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism
The Lin28/let-7 axis regulates glucose metabolism
The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating-metabolism. When overexpressed in mice, both Lin28a and LIN28B promote an insulin-sensitized state that resists high-fat-diet induced diabetes. Conversely, muscle-specific loss of Lin28a or overexpression of let-7 results in insulin resistance and impaired glucose tolerance. These phenomena occur, in part, through the let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. In addition, them TOR inhibitor, rapamycin, abrogates Lin28a-mediated insulin sensitivity and enhanced glucose uptake. Moreover, let-7 targets are enriched for genes containing SNPs associated with type 2 diabetes and control of fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism