44 research outputs found
On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols
In this work we focus on a natural class of population protocols whose
dynamics are modelled by the discrete version of Lotka-Volterra equations. In
such protocols, when an agent of type (species) interacts with an agent
of type (species) with as the initiator, then 's type becomes
with probability . In such an interaction, we think of as the
predator, as the prey, and the type of the prey is either converted to that
of the predator or stays as is. Such protocols capture the dynamics of some
opinion spreading models and generalize the well-known Rock-Paper-Scissors
discrete dynamics. We consider the pairwise interactions among agents that are
scheduled uniformly at random. We start by considering the convergence time and
show that any Lotka-Volterra-type protocol on an -agent population converges
to some absorbing state in time polynomial in , w.h.p., when any pair of
agents is allowed to interact. By contrast, when the interaction graph is a
star, even the Rock-Paper-Scissors protocol requires exponential time to
converge. We then study threshold effects exhibited by Lotka-Volterra-type
protocols with 3 and more species under interactions between any pair of
agents. We start by presenting a simple 4-type protocol in which the
probability difference of reaching the two possible absorbing states is
strongly amplified by the ratio of the initial populations of the two other
types, which are transient, but "control" convergence. We then prove that the
Rock-Paper-Scissors protocol reaches each of its three possible absorbing
states with almost equal probability, starting from any configuration
satisfying some sub-linear lower bound on the initial size of each species.
That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a
distributed system. Some of our techniques may be of independent value
Phase Transition of a Non-Linear Opinion Dynamics with Noisy Interactions
International audienceIn several real \emph{Multi-Agent Systems} (MAS), it has been observed that only weaker forms of\emph{metastable consensus} are achieved, in which a large majority of agents agree on some opinion while other opinions continue to be supported by a (small) minority of agents. In this work, we take a step towards the investigation of metastable consensus for complex (non-linear) \emph{opinion dynamics} by considering the famous \undecided dynamics in the binary setting, which is known to reach consensus exponentially faster than the \voter dynamics. We propose a simple form of uniform noise in which each message can change to another one with probability and we prove that the persistence of a \emph{metastable consensus} undergoes a \emph{phase transition} for . In detail, below this threshold, we prove the system reaches with high probability a metastable regime where a large majority of agents keeps supporting the same opinion for polynomial time. Moreover, this opinion turns out to be the initial majority opinion, whenever the initial bias is slightly larger than its standard deviation.On the contrary, above the threshold, we show that the information about the initial majority opinion is ``lost'' within logarithmic time even when the initial bias is maximum.Interestingly, using a simple coupling argument, we show the equivalence between our noisy model above and the model where a subset of agents behave in a \emph{stubborn} way