44 research outputs found

    On Convergence and Threshold Properties of Discrete Lotka-Volterra Population Protocols

    Get PDF
    In this work we focus on a natural class of population protocols whose dynamics are modelled by the discrete version of Lotka-Volterra equations. In such protocols, when an agent aa of type (species) ii interacts with an agent bb of type (species) jj with aa as the initiator, then bb's type becomes ii with probability P_ijP\_{ij}. In such an interaction, we think of aa as the predator, bb as the prey, and the type of the prey is either converted to that of the predator or stays as is. Such protocols capture the dynamics of some opinion spreading models and generalize the well-known Rock-Paper-Scissors discrete dynamics. We consider the pairwise interactions among agents that are scheduled uniformly at random. We start by considering the convergence time and show that any Lotka-Volterra-type protocol on an nn-agent population converges to some absorbing state in time polynomial in nn, w.h.p., when any pair of agents is allowed to interact. By contrast, when the interaction graph is a star, even the Rock-Paper-Scissors protocol requires exponential time to converge. We then study threshold effects exhibited by Lotka-Volterra-type protocols with 3 and more species under interactions between any pair of agents. We start by presenting a simple 4-type protocol in which the probability difference of reaching the two possible absorbing states is strongly amplified by the ratio of the initial populations of the two other types, which are transient, but "control" convergence. We then prove that the Rock-Paper-Scissors protocol reaches each of its three possible absorbing states with almost equal probability, starting from any configuration satisfying some sub-linear lower bound on the initial size of each species. That is, Rock-Paper-Scissors is a realization of a "coin-flip consensus" in a distributed system. Some of our techniques may be of independent value

    Phase Transition of a Non-Linear Opinion Dynamics with Noisy Interactions

    Get PDF
    International audienceIn several real \emph{Multi-Agent Systems} (MAS), it has been observed that only weaker forms of\emph{metastable consensus} are achieved, in which a large majority of agents agree on some opinion while other opinions continue to be supported by a (small) minority of agents. In this work, we take a step towards the investigation of metastable consensus for complex (non-linear) \emph{opinion dynamics} by considering the famous \undecided dynamics in the binary setting, which is known to reach consensus exponentially faster than the \voter dynamics. We propose a simple form of uniform noise in which each message can change to another one with probability pp and we prove that the persistence of a \emph{metastable consensus} undergoes a \emph{phase transition} for p=16p=\frac 16. In detail, below this threshold, we prove the system reaches with high probability a metastable regime where a large majority of agents keeps supporting the same opinion for polynomial time. Moreover, this opinion turns out to be the initial majority opinion, whenever the initial bias is slightly larger than its standard deviation.On the contrary, above the threshold, we show that the information about the initial majority opinion is ``lost'' within logarithmic time even when the initial bias is maximum.Interestingly, using a simple coupling argument, we show the equivalence between our noisy model above and the model where a subset of agents behave in a \emph{stubborn} way

    Noradrenergic Mediation of Experimental Cerebrovascular Spasm

    No full text

    Primary Melanomas of the Central Nervous System

    No full text

    Pathophysiology of Syringomyelia

    No full text

    Extraspinal meningioma

    No full text
    corecore